
Formal Verification of robotic surgery tasks by
reachability analysis

Davide Bresolina, Luca Gerettib, Riccardo Muradorec, Paolo Fiorinic, Tiziano
Villac

aUniversity of Bologna (Italy)
bUniversity of Udine (Italy)
cUniversity of Verona (Italy)

Abstract

In this paper we discuss the application of formal methods for the verification
of properties of control systems designed for autonomous robotic systems. We
illustrate our proposal in the context of surgery by considering the automatic
execution of a simple action such as puncturing. To prove that a sequence of
subtasks planned on pre-operative data can successfully accomplish the surgical
operation despite model uncertainties, we specify the problem by using hybrid
automata. We express the requirements of interest as questions about reachabi-
lity properties of the hybrid automaton model. Then, we use the tool Ariadne
to study how the choice of the control parameters and the measurement error
affect the safety of the system.

Keywords: Formal Verification, Hybrid Systems, Surgical Robotics

1. Introduction

In the last decades robotics played a relevant role in the progress of surgery.
Even though robotic surgery has been a new field of investigation, in a short
time the prototypes built in robotics laboratories gained a place into operating
rooms. A new terminology witnesses this trend: computer-integrated surgery,
medical robotics, rehabilitation robotics, telerobotics, telesurgery, robotic assis-
tive systems, robot-assisted laparoscopic surgery, etc. [1, 2, 3]. Robotic surgery
has already proven its advantages by improving safety, accuracy, reproducibility,
and decreasing patient recovery time and surgeon fatigue [4, 5, 6, 7]. This is
both a blessing and a curse, in the sense that the advanced functionalities can
be useful for surgeons, but at the same time the increased complexity makes
the system more susceptible to design errors and poses new challenges to the

Email addresses: davide.bresolin@unibo.it (Davide Bresolin),
luca.geretti@uniud.it (Luca Geretti), riccardo.muradore@univr.it (Riccardo Muradore),
paolo.fiorini@univr.it (Paolo Fiorini), tiziano.villa@univr.it (Tiziano Villa)

Preprint submitted to MICPRO July 21, 2017

designers. Advanced design, control, monitoring and deployment paradigms are
needed for the next-generation robotic surgery sytems.

In engineering practice, the analysis of a complex system is usually carried
out via simulation, which allows the designers to explore one of the possible sys-
tem executions at a time. Formal methods instead aim at exploring all possible
executions, in order to ensure proper functionality of the system in all cases,
or conversely to acquire information about potential fault cases. In computer
science, the name Formal Methods identifies a large family of mathematical
languages, techniques and tools used to specify and verify systems and to help
engineers to develop more reliable systems. Nowadays, they are standard prac-
tice in many ICT industries for the development of (discrete) HW/SW systems,
and are becoming a vital aspect in the design of safety-critical cyberphysical
systems, including robotics and automation systems [8, 9]. An area where they
can greatly improve the reliability of the design process is Autonomous Robotic
Surgery (ARS) [10, 11]. The aim of ARS is to perform simple tasks without the
presence (or telepresence) of surgeons. Therefore, with ARS, basic tasks will
be executed by robots, allowing the surgeons to focus only on the most difficult
aspects of the intervention. This implies that the overall control architecture
must respect strict safety constraints and must guarantee the successful accom-
plishment of the surgical tasks, independently of uncertainties and un-modeled
subsystems.

In this work we will show how formal verification can provide accurate and
reliable answers to help the designer in the development of ARS systems by
considering the automatic execution of a simple surgical action such as punc-
turing. We first model the overall task as a finite sequence of atomic actions that
should be accomplished to guarantee the success of the surgical action. This
model takes the form of a hybrid automaton consisting of a discrete control part
that operates in a continuous environment [12]. Then, we specify the safety
constraints that the system should respect in a precise mathematical way as
reachability properties of the hybrid automaton model. Finally, we use a state-
of-the art tool for reachability analysis of hybrid automata (Ariadne [13]) to
find the values of control parameters that guarantee successful accomplishment
of the surgical operation, even in presence of measurement errors. This paper
focuses on the the second step of the usual design process: mathematical mode-
ling → simulation & formal verification → mechanical design → experimental
validation, and has a twofold goal: (1) to highlight how a formal verification
tool can be used to predict the performance of a robotic system, and (2) to help
the designer during the tuning phase of the controller. We leave the study on
the subsequent design step to forthcoming publications.

The paper extends the preliminary results reported in [14] and is organized
as follows. In Section 3 we model the surgical task and provide a mathematical
model of the robotic manipulator. Section 4 formally defines the properties to
be verified, whereas Section 5 describes the verification strategy and the results
of the experiments. Some conclusions are drawn in Section 6.

2

PHAVer SpaceEx HSOLVER Ariadne

State space representation Polyhedra Support functions Predicate abstraction Image sets

Nonlinear dynamics no no YES YES

Composition of automata YES YES no YES

Rigorous results YES no YES YES

User-definable accuracy YES YES no YES

Graphical output of results YES YES no YES

Max. no. of variables∗ ∼ 10 ∼ 100 ∼ 10 ∼ 10

Table 1: Comparison of PHAVer, SpaceEx, HSOLVER and Ariadne. (∗these numbers of
variables were reached in some cases reported respectively in [15], [16], [17] and [13].)

2. Review of Formal Verification Tools

When the system dynamics are simple, the evolution can be computed ex-
actly, and most of the verification techniques for finite-state models can be
used to obtain an exact answer to verification problems. When the dynamics
is more complex, the reachable set cannot be computed exactly, and different
techniques are needed to face the complexity of the verification problem. One
of the most successful approaches is to use approximation techniques to under-
or over-approximate the evolution of the system.

Among the publicly available state-of-the art tools that use approximation
techniques to verify hybrid automata, the most relevant and actively developed
are PHAVer [15], SpaceEx [16], HSOLVER [17], and Ariadne [13]. In the
following we briefly describe the four tools. We refer the reader to the specific
literature for a comprehensive description of their algorithms and state space
representation choices. Table 1 summarizes their differences under the following
criteria:

• Class of system they can verify: do they support nonlinear dynamics?
Can the system be specified as a composition of smaller components?

• Soundness of the results: is the verification result guaranteed to be
mathematically correct?

• Accuracy control: is it possible to choose the quality of the approxima-
tions?

• Output: is it possible to obtain a graphical output of the results, or is
only a YES/NO answer provided?

• Scalability: what is the maximum size of a system that they can verify?

PHAVer [15] was one of the first tools that enabled verification of hybrid
automata with complex dynamics: it handles affine dynamics and guards and
supports the composition of hybrid automata. The state space is represented
using polytopes. Results are formally sound by means of an exact and robust
arithmetic with unlimited precision. Scalability is limited: systems with more
than 10 continuous variables are usually out of the capabilities of the tool.

3

SpaceEx [16] is a modular open-source framework that improves upon
PHAVer, with particular regard to scalability (systems with 100 variables have
been analyzed with this tool). It combines polyhedra and support functions to
represent the state space of systems with piecewise affine, non-deterministic dy-
namics. Local error bounds on the computation are guaranteed using variable
time steps; however, differently from PHAVer, the result of SpaceEx is not
guaranteed to be numerically sound. This means that when the tool finds the
system safe, we can only conclude that more sophisticated methods are neces-
sary to find bugs for that system.

HSOLVER [17] uses constraint propagation and abstraction-refinement tech-
niques to verify safety properties of nonlinear hybrid systems. In this setting,
the hybrid system under verification is first abstracted by a finite-state discrete
model that approximates the original one. If the abstraction is not accurate
enough to obtain an answer to the verification problem, it is improved using
constraint propagation techniques, until either an answer is found or the maxi-
mum number of refinement steps is reached. HSOLVER supports systems with
complex non-linear dynamics and guards, but not the composition of automata.
Because of the particular state-space representation, it cannot provide a graph-
ical output of the reachable set, but only a safe/possibly unsafe answer to the
verification problem.

Ariadne [13] uses rigorous numerical methods for working with real num-
bers, functions and sets in the Euclidean space, to verify hybrid systems with
nonlinear dynamics, guards and reset functions. It supports composition to
build complex systems from simpler components, and can compute both upper-
approximations and lower-approximations of the reachable set. By combining
outer and lower approximations, Ariadne can provide both positive and nega-
tive answers to safety properties and other more complex verification problems.
Its high expressivity, however, affects the performance and scalability of the
tool, which is currently limited to systems with 10 continuous variables.

3. Modeling a Surgical Task

Puncturing is the act of penetrating a biological tissue with a needle, e.g.
when performing a biopsy. Together with other elementary tasks such as cutting
and suturing, this action can be used to build more complex surgical tasks. To
model the puncturing task in a formal way, we divided its execution into three
subtasks: (i) a free motion phase, where the end effector of the robot approaches
the patient’s tissue starting from its home position; (ii) a perpendicular attitude
phase, where the end effector is in contact with the tissue, and the robot moves
its wrist to have the tool orthogonal with the patient’s surface; (iii) a puncturing
phase, where the robot increases the force applied by the end effector until the
tissue is penetrated.

We assume that the controller for each subtask stabilizes the plant, while
the switching between controllers preserves the stability. Our goal is not to
prove the stability of the overall system but to prove in a formal way that the
task itself can be executed correctly. Thus, the focus of the analysis is to show

4

Free

Ẋ = f1(X)
x ≤ xe + δ

Perp

Ẋ = f2(X)
t ≤ 5

Punct

Ẋ = f3(X)
Ke(x− xc) ≤ Fp

Stop

Ẋ = 0

x ≥ xe − δ

xc := x, yc := y

t ≥ 5

Ke(x− xc) ≥ Fp

Figure 1: Automaton model of the surgical test bench.

the feasibility of the task rather than the stability of the system. The test case
under consideration is a typical example of a hybrid system, i.e., a system mixing
discrete and continuous behaviour that cannot be characterized faithfully using
either discrete or continuous models only. A hybrid system consists of a discrete
part that operates in a continuous environment, and for this reason it is sensitive
not only to time-driven phenomena but also to event-driven phenomena.

We model the surgical task by using the well known formalism of hybrid
automata [12]. Intuitively, a hybrid automaton is a “finite-state automaton”
with continuous variables that evolve according to dynamics specified at each
discrete node.

Definition 1. A hybrid automaton is a tuple A = 〈Loc, Edg, X, Inv,Dyn,Act,Res〉
such that:

1. 〈Loc,Edg〉 is a finite directed graph; the vertices, Loc, are called loca-
tions or control modes, and the directed edges, Edg, are called discrete
transitions or control switches;

2. X is a finite set of continuous variables representing the continuous state
space of the system;

3. each location ` ∈ Loc is labeled by the invariant condition Inv[`] on X and
the dynamic law Dyn [`] on X × X × R≥0 such that if Inv[`](x) is true
then Dyn [`](x,x, 0) is true;

4. each edge e ∈ Edg is labeled by the activation condition Act [e] on X and
the reset relation Res [e] on X ×X.

A state of a hybrid automaton A is a pair 〈`,x〉, where ` ∈ Loc is a location
and x is an assignment of values for the continuous variables in X. A state
〈`,x〉 is said to be admissible if Inv[`](x) holds.

The evolution of a hybrid automaton alternates continuous and discrete
steps. In a continuous step, the location does not change, while the contin-
uous variables change following the continuous dynamics Dyn [`] of the loca-
tion. A discrete evolution step consists of the activation of a discrete transition

5

y
(m

)
x (m)

xe

(x, y)

φ

Figure 2: Cartesian state space of the surgical test bench.

e ∈ Edg that can change both the current location and the value of the state
variables, in accordance with the reset function Res [e] associated to the tran-
sition. The interleaving of continuous and discrete evolutions is decided by the
invariant Inv[`] of the location, which must be true for the continuous evolution
to keep on going, and by the guard predicate Act [e], which must be true for a
discrete transition e to be activated. Formally, a trajectory ξ of a hybrid au-
tomaton can be defined as a (finite or infinite) sequence (ξi)i≥0 of continuous
functions ξi : [ti, ti+1] → Loc ×X such that Dyn[`](ξi(s), ξi(t), t − s) holds for
all ti ≤ s ≤ t ≤ ti+1, and both Act [e](ξi(ti+1)) and Res [e](ξi(ti+1), ξi+i(ti+1))
hold for some e ∈ Edg. Here, ξi(t) represents the state of the system after i
events and at time t.

In our test case, each location of the automaton corresponds to one of the
subtasks identified for the surgical action. The automaton describing a simpli-
fied version of the puncturing action is shown in Figure 1. The continuous space
is given by the 9-dimensional set of variables

X = {x, vx, y, vy, φ, vφ, t, xc, yc}, (1)

where x and y represent the position of the end-effector on a plane, φ is the
orientation of the needle, vx, vy and vφ are the first derivatives of x, y, and φ, t
is the time elapsed and xc and yc are auxiliary variables that store the position
of the contact point of the end effector with the patient’s skin. The patient
is assumed to lie on a plane orthogonal to the x coordinate, with an unknown
position in the range [xe− δ, xe + δ], where δ is the uncertainty and xe = 0.95m
the nominal position.

Locations Free, Perp and Punct correspond to the three subtasks in which
the puncturing action is divided, while location Stop is reached upon successful
execution of the task. Transitions describe the switching from one subtask to
another, and are defined as follows:

• the transition from Free to Perp is activated when the end effector touches
the tissue. To model the uncertainty in the position of the patient, this
transition can be taken as soon as x is greater or equal to xe − δ, but

6

the automaton is not forced to leave location Free if x is less or equal to
xe + δ. Upon activation of the transition, the actual value of the contact
point between the end-effector and the patient is stored in variables xc
and yc;

• the manipulator remains in location Perp while the time is less than 5s.
At t = 5s the tool is perpendicular to the tissue, the transition is activated
and the automaton moves to Punct ;

• the last transition becomes active as soon as the force applied by the
needle (given by the expression Ke(x − xc) assuming that the tissue can
be modeled as a spring with stiffness equal to Ke) is greater than the
threshold Fp, and the tissue is penetrated.

In location Stop the robot is assumed to remain motionless, hence the deriva-
tives of all variables are set to 0. To give the details of the continuous dynamics
in locations Free, Perp and Punct, we have to briefly recall the dynamic model
of the robot and of the controller. A serial link manipulator in joint space with
n-degrees of freedom is described by a set of nonlinear differential equations

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) = u− JT (q)h (2)

where q =
[
q1 · · · qn

]T
is the vector of generalized coordinates with corre-

sponding velocity q̇ and acceleration q̈, u =
[
u1 · · · un

]T
is the command

torque vector, and h =
[
fTe uTe

]T
is the force/torque vector applied by the end

effector when the robot is in contact with the environment. In this standard
Lagrangian representation, M is the symmetric non-singular moment of inertia
matrix, C is the Coriolis and centrifugal force matrix, F (q̇) is the frictional
torque, and G is the gravitational part. The relation between the external force
and the torque at the joint level is given by the transpose of the Jacobian JT (q)
evaluated at the current position q [18].

Equation (2) can be re-written in Cartesian or task space, where the nom-
inal trajectory is usually designed: in our case, the three-dimensional space

x =
[
x y φ

]T
as shown in Figure 2. Using the direct kinematic and the

relationship between geometric and analytical Jacobians, we end up with

Λ(x)ẍ + Ξ(x, ẋ)ẋ + γ(x) = τ + fe (3)

where x =
[
x y φ

]T
is the pose (position and orientation) of the end effector

(i.e. the tip of the needle). The matrices Λ(x) and Ξ(x, ẋ) are the transformed
inertia matrix and the Coriolis/centrifugal matrix, respectively. The torque τ
is the control vector and fe is the vector of generalized interaction force. We
refer the reader to [18] for more details and properties of this mathematical
representation.

In our example the model of the robot is assumed known, and hence it is pos-
sible to implement the inverse dynamics control within the parallel force/position

7

t (s)

x
d
(m

)

1 4 5

0.1

0.9
1.0

t (s)

y
d
(m

)

1 4 5

0.1

0.95
1.0

t (s)

φ
d
(r
a
d
)

1 4 5

π
20

9π
20

π
2

Figure 3: Reference trajectory xd(t).

scheme [18]. Let xd − x be the tracking error between the reference trajectory
xd and the actual Cartesian position x. In free motion (fe = 0) the robot model
coupled with the position control action becomes

Mdẍ = Mdẍd +KD(ẋd − ẋ) +KP (xd − x), (4)

where Md,KD,KP are positive design parameters whose choice is application
dependent. When the end effector is in contact with the patient, the right-hand
side of the control equation has also a term associated with the interaction force
fe = Ke(x− xc):

Mdẍ = Mdẍd +KD(ẋd − ẋ) +KP (xd − x) +KfKe(x− xc). (5)

where xc is the contact point in Cartesian coordinates and Ke is the stiffness
matrix of the tissue1. The control force action KfKe(x − xc) depends on the
design parameter Kf . This parameter is a sort of trade off between the position
action and the force action: it is in charge of adapting the nominal trajectory
xd according to the current interaction force.

When the automaton is in locations Free and Perp, the reference trajec-
tory xd(t) starts from (0, 0, π2) and ends in (1.0, 0.95, 0) after 5s following the
piecewise linear functions depicted in Figure 3. In location Punct the reference
trajectory keeps y and φ constant, and increases the value of x to penetrate the
tissue:

xd(t) = xc + 1
2 (t− 5) yd(t) = yc φd(t) = 0 (6)

In all locations the dynamics of variables x, y, φ, t, xc, yc are fixed and set to
ẋ = vx, ẏ = vy, φ̇ = vφ, ṫ = 1, ẋc = 0, ẏc = 0. The dynamics for vx, vy and vφ
are obtained by substituting xd reported in Figure 3 in (4) for location Free, in
(5) for location Perp, and xd from (6) in (4) for location Punct.

1In the experiments, we set Md = 100kg, Ke = 1000N/m and we vary the control para-
meters

8

4. Expressing Properties of a Surgical Task

The verification of hybrid systems is usually carried out by reachability
analysis, i.e., by computing the set of all states that can be reached under
the dynamical evolution starting from a given initial state set. Formally, we
say that a state 〈`r, r〉 reaches a state 〈`s, s〉 if there exists a finite trajec-
tory ξ = (ξi)0≤i≤n such that ξ0(0) = 〈`r, r〉 and ξn(tn+1) = 〈`s, s〉. We use
ReachSetA(〈`r, r〉) to denote the set of states reachable from 〈`r, r〉. Moreover,
given a set of initial states X0 ⊆ Loc×X we use ReachSetA(X0) to denote the
set ∪〈`r,r〉∈X0

ReachSetA(〈`r, r〉). The reachability problem for hybrid automata
is the problem of computing the reachable set ReachSetA(X0).

Doing verification by reachability analysis implies that tools typically accept
a subset of the state space called safe set as a specification, and test whether
the reachable set is included into the safe set or not. This means that they
are limited to safety properties, that is, properties that hold for all possible
executions and for all time instants. Moreover, the properties cannot be specified
using some specification language, but must be transformed into a safe set by
the user. Nevertheless, they can still be used to verify meaningful properties of
cyberphysical systems.

In the following we concentrate our attention on the following property of
the surgical task.

Property P: The task is feasible, and the position of the needle at
the end of the task is always inside a given target region R.

This property can be formalized as Eventually(Stop ∧ x ∈ R), that unfortu-
nately is not a safety property, since it requires every trajectory of the system
to reach the target region at some unspecified time instant. Hence, it cannot be
represented by a safe set and thus it cannot be verified by current tools. How-
ever, if we impose the task to be completed before a maximum time tmax and
if we add an auxiliary variable t representing the time elapsed, we can rephrase
the property as a safety property:

Always(t ≥ tmax → (Stop ∧ x ∈ R)),

which corresponds to the safe set {(`,x) | t < tmax} ∪ {(`,x) | t ≥ tmax ∧ ` =
Stop ∧ x ∈ R}.

In the next section we will study the satisfaction of the Property P with
respect to the values of two design parameters, namely, to the proportional and
derivative gains KP and KD of the controller, and to the measurement errors.

5. Verification of a Surgical Task

Once the task is modeled as described in Section 3 and the properties of
interests are formalized as in Section 4, formal verification algorithms can be
used to analyze the behavior of the system and obtain an answer to the question
“does the system respect the desired properties?”. We would like to emphasize

9

that one of the advantages of formal methods is that they are independent of
both the specific system and the specific property. Indeed, as long as the system
is modeled by an hybrid automaton and properties are formalized as safe sets,
any tool of Section 2 can, in principle, obtain an answer to the verification
problem. Specific modeling choices like partitioning into sub-tasks, the number
of state variables or the complexity of the property can affect the performance
of the tools, but do not invalidate the verification methodology.

This high flexibility has a price: unfortunately, the verification of hybrid
automata is an undecidable problem. There is no algorithm that can compute
the reachable set in an exact way without imposing strong restrictions on the
dynamics of the automaton [12]. Nevertheless, approximation techniques can
be exploited to verify hybrid automata with complex dynamics: suppose we
can compute an over-approximation S to ReachSetA(X0), that is, a set S ⊇
ReachSetA(X0). Then if S is a subset of the safe set, then so is the reachable
set and the automatonA satisfies the property. Conversely, if we can compute an
under-approximation S to ReachSetA(X0) (that is, a set S ⊆ ReachSetA(X0))
that turns out to contain at least one point outside the safe set, we have proved
that A does not respect the safety property ϕ.

In this section we study the dependence of the satisfaction of the property
on the two control parameters KD and KP , and on measurement errors. We
performed the verification using Ariadne. The choice of the tool was moti-
vated by two reasons. First of all, the tool comparison in [14] (briefly recalled
in Section 2) suggests that our puncturing test case is outside the capabilities
of tools like PHAVer and HSOLVER, and that the improved reachability al-
gorithms implemented by recent tools are needed. Second, to obtain both a
positive and a negative answer to the verification problem we need a tool that
is able to compute both over-approximations and under-approximations of the
reachable set. Ariadne fulfills both requirements: it uses Images Sets and Tay-
lor expansion approximations to manipulate efficiently functions and sets in the
Euclidean space, and can compute not only upper-approximations of the reach-
able sets, but also lower-approximations. Formally, an ε-lower approximation
Lε of a set S is a set such that, for every point x ∈ Lε, there exists a point
y ∈ S at a distance less than ε from x. Hence, they can play the role of under
approximations: if there exists a point in Lε at a distance more than ε from the
safe set we can conclude that the system is unsafe.

In the first step of this verification example, we determine the values of KD

and KP for which Property P is true, setting a maximum time to complete
the task equal to 10 sec. and a target region such that y ∈ [0.94, 0.96]. We set
the range of possible values for KD as [100, 8000] and a range [500, 3500] for
KP , and we divided the parameter space into a 64 × 64 grid. Figure 4 shows
the results of the verification: green dots are values of the control parameters
where Ariadne provided a “safe” answer, red dots correspond to the values of
the parameters where the tool provided an “unsafe” answer, while yellow dots
depict the values of the parameters for which a definite answer cannot be found.

In the choice of the controller parameters, successful accomplishment of the
task is the main objective, but not the only one. Another important feature is

10

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

Figure 4: Satisfaction of Property P with no measurement error.

ε
v

=
+

1
%

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

ε
v

=
0
%

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

ε
v

=
−

1
%

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 2000 3000 4000 5000 6000 7000 8000

K
P

KD

εx = −1% εx = 0% εx = +1%

Figure 5: Satisfaction of Property P for different position/velocity measurement errors.

11

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

v e

xe

Figure 6: Satisfaction of Property P for KD = 4000, KP = 2000 and different measurement
errors.

the robustness of the controller, that is, its ability to achieve the control goal
also in presence of errors and noise. Hence, as a second verification example
we studied the effect of measurement errors on the robotic surgery example.
More precisely, we introduced a constant multiplicative error (i.e. a relative
bias) in Equations (4) and (5), by replacing x and ẋ with xm = x(1 + εx) and
ẋm = ẋ(1 + εv), where εx and εv are the position and velocity multiplicative
errors, respectively. Figure 5 shows the results of the space analysis of controller
parameters for different combinations of position and speed errors.

The following observations can be drawn:

• the completion of the task is strictly related to the combination of errors
and not only to their magnitudes, i.e. the case (εx, εv) = (−1%,−1%) is
much more severe than (εx, εv) = (+1%,+1%) even if the amount of bias
is the same (in modulus).

• the combination of (εx, εv) affects the set of pairs KP ,KD that is feasible
for the task.

• a safe design should select a pair KP ,KD that is feasible in any condition,
i.e. that belongs to any green zone. In the present case this is not possible
because no pairs KP ,KD satisfy the case (εx, εv) = (−1%,−1%): we
should enlarge the range for the control parameters and/or change the
kind of controller for handling underestimates of position and velocity.

We conclude this section with a finer study of the effect of errors on the successful
achievement of the task. We fixed the values of the control parameters to
KD = 4000 and KP = 2000, and we determined the values of the measurement
errors εx and εv such that the desired property is satisfied. The range of possible
values for the measurement errors is [−0.02, 0.02] (i.e., from −2% to 2%). As in
the previous verification runs, the space is divided into a 64× 64 grid. Figure 6
shows the results of this last verification example.

12

6. Conclusions

These experiments prove that formal verification can be useful within the
control design cycle to prove the correctness of task execution and to guide the
designers in tuning the control parameters. However, the existing tools still lack
in general scalability and robustness to be truly practical for control engineers.
This motivates the need for further research efforts to improve these features and
turn formal verification into a standard practice for the engineering of robotic
surgery systems.

One possible way to overcome the limitations of current tools is to develop
abstraction techniques that can simplify the model of the system to make it
tractable without loosing information on the properties of interest [19]. An
alternative approach is to exploit assume-guarantee reasoning to simplify the
verification problems to be fed into the tools. In this approach the system
under verification is seen as an assembly of components, represented in terms
of assumptions about the environment and guarantees about the components’
behavior. In this way, the verification problem for the whole system is decom-
posed into a set of simpler problems that, if satisfied, guarantee that the overall
problem is satisfied [20, 21].

In the future we plan to apply the proposed methodology to a real robotic
system, to use the outcomes of the formal verification phase to tune the con-
troller, and to experimentally verify the property.

References

[1] P. Kazanzides, G. Fichtinger, G. Hager, A. Okamura, L. Whitcomb, R. Tay-
lor, Surgical and interventional robotics-core concepts, technology, and
design, Robotics & Automation Magazine, IEEE 15 (2008) 122–130.

[2] R. Taylor, A perspective on medical robotics, Proceedings of the IEEE 94
(2006) 1652 –1664.

[3] P. Berkelman, et al., A Compact Modular Teleoperated Robotic System
for Laparoscopic Surgery, The International Journal of Robotics Research
28 (2009) 1198.

[4] K. Cleary, C. Nguyen, State of the art in surgical robotics: Clinical ap-
plications and technology challenges, Computer Aided Surgery 6 (2001)
312–328.

[5] C. M. R. Marohn, C. E. J. Hanly, Twenty-first century surgery using
twenty-first century technology: surgical robotics, Current Surgery 61
(2004) 466–473.

[6] E. Guglielmelli, M. J. Johnson, T. Shibata, Guest editorial special issue
on rehabilitation robotics, Robotics, IEEE Transactions on 25 (2009) 477
–480.

13

[7] J. Desai, N. Ayache, Editorial Special Issue on Medical Robotics, The
International Journal of Robotics Research (2009).

[8] T. L. Johnson, Improving automation software dependability: A role for
formal methods?, Control Engineering Practice 15 (2007) 1403–1415.

[9] H. Kress-Gazit, Robot challenges: Toward development of verification and
synthesis techniques [from the guest editors], Robotics Automation Maga-
zine, IEEE 18 (2011) 22–23.

[10] R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, T. Villa, Robotic Surgery:
Formal Verification of Plans, Robotics & Automation Magazine, IEEE 18
(2011) 24–32.

[11] R. Muradore, P. Fiorini, G. Akgun, D. E. Barkana, M. Bonfe, F. Boriero,
A. Caprara, G. De Rossi, R. Dodi, O. J. Elle, et al., Development of a
cognitive robotic system for simple surgical tasks, Int J Adv Robot Syst
12:37 (2015).

[12] R. Alur, C. Courcoubetis, T. A. Henzinger, P. H. Ho, Hybrid Automata:
An Algorithmic Approach to the Specification and Verification of Hybrid
Systems, in: Hybrid Systems, volume 736 of LNCS, Springer, 1993, pp.
209–229.

[13] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, T. Villa,
Assume-guarantee verification of nonlinear hybrid systems with ARIADNE,
Int. J. Robust. Nonlinear Control 24 (2014) 699–724.

[14] D. Bresolin, L. Geretti, R. Muradore, P. Fiorini, T. Villa, Verification of
robotic surgery tasks by reachability analysis: A comparison of tools, in:
Digital System Design (DSD), 2014 17th Euromicro Conference on, IEEE,
pp. 659–662.

[15] G. Frehse, PHAVer: algorithmic verification of hybrid systems past
HyTech, International Journal on Software Tools for Technology Trans-
fer (STTT) 10 (2008) 263–279.

[16] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, O. Maler, SpaceEx: Scalable verification of
hybrid systems, in: Proc. 23rd International Conference on Computer
Aided Verification (CAV 2011), volume 6806 of LNCS, Springer Berlin /
Heidelberg, 2011, pp. 379–395.

[17] S. Ratschan, Z. She, Safety verification of hybrid systems by constraint
propagation based abstraction refinement, ACM Transactions in Embedded
Computing Systems 6 (2007).

[18] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: modelling, plan-
ning and control, Springer Verlag, 2008.

14

[19] R. Alur, T. Dang, F. Ivančić, Counterexample-guided predicate abstraction
of hybrid systems, Theoretical Computer Science 354 (2006) 250 – 271.

[20] G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, J. Sifakis, An
approach to modelling and verification of component based systems, SOF-
SEM 2007: Theory and Practice of Computer Science (2007) 295–308.

[21] A. Cimatti, S. Tonetta, A property-based proof system for contract-based
design, in: Proc. of 38th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications (SEAA 2012), pp. 21–28.

15

