
Parametric formal verification: the robotic

paint spraying case study

Luca Geretti ∗ Riccardo Muradore ∗∗ Davide Bresolin ∗∗∗

Paolo Fiorini ∗∗∗∗ Tiziano Villa †

∗University of Verona, Italy (e-mail: luca.geretti@univr.it)
∗∗University of Verona, Italy (e-mail: riccardo.muradore@univr.it)
∗∗∗University of Padova, Italy (e-mail: davide.bresolin@unipd.it)
∗∗∗∗University of Verona, Italy (e-mail: paolo.fiorini@univr.it)
†University of Verona, Italy (e-mail: tiziano.villa@univr.it)

Abstract:
The design of robots in industrial automation is based on classical control theory approaches.
Recently, formal verification methodologies have been introduced in the design flow, due to
their ability of analyzing the model of the robot-environment system in a conservative way. In
this paper we specifically explore the analysis of system parameters within a continuous space,
by developing an extension of the tool Ariadne for reachability analysis of hybrid automata.
Under this framework, the system takes the form of a composition of automata which model
discrete control parts that operate in a continuous environment. In particular, the dynamics of
the system includes parameters, i.e., unspecified constants for which we want to observe the
effect on the dynamics, with the purpose of finding optimal design values. As a case study for
this methodology, we consider a robotic paint sprayer, in which we use Ariadne to study the
effect of choosing different values of a parameter that represents a point of observation for the
system. Using the information gathered from this automated analysis, we provide an answer
to the problem of optimizing the surface spraying speed while respecting a given measure of
spraying quality.

Keywords: Parametrization, Formal verification, Robotics, Hybrid systems, Nonlinear systems,
Reachability, Interval arithmetics

1. INTRODUCTION

According to the Industry 4.0 paradigm, in the factory
of the future there will be a tighter integration of cyber-
physical systems cooperating at different levels: from sens-
ing to perception, from reasoning to actuation. To fully
exploit the potentiality of this new design approach, engi-
neers have to cope with two challenges: (1) develop easy-
to-use tools to program the different devices and services in
a short time, and (2) check off-line if the designed control
architecture will fulfill the requirements and the technical
specifications. In this paper we address the second aspect
by focusing on formal methods for the industrial plants of
the future (Bresolin et al. (2012)). To make the analysis
more concrete, we select among the different possible case
studies, the robotic painting of a surface through spraying.
This is a well known problem studied in particular in
the automotive industry, for example in Goodman and
Hoppensteradt (1991); Biegelbauer et al. (2005); Chen
et al. (2005).

The optimal paint path is usually calculated via man-
ual programming or using computer-aided design (CAD)
based on models for the robot manipulator and the shape
of the 3D objects, as in Gasparetto et al. (2012); Yu et al.
(2015).

Starting from a painting motion for the robotic arms
holding the sprayer, formal verification is able to answer
questions like the following two:

• is the whole surface well and uniformly covered?
• are there some areas where too much paint has been

sprayed?

The first question relates to the quality level of the
painting (i.e., uniformity of the paint thickness), whereas
the second one refers to an economical issue (i.e., minimum
wasted paint).

In this paper in particular we use paint spraying as
a case study to focus on the problem of analyzing a
system parametrically. By parametric verification we mean
the analysis of the effect of varying parameters on the
properties of a system, with the purpose of finding the
optimal values that satisfy some requirements.

We developed our methodology and applied it on the
tool Ariadne, a C++ library that computes reachabil-
ity analysis with interval arithmetics to perform formal
verification in a numerically rigorous way (Collins et al.
(2012)). Ariadne uses the well-known hybrid automata
model of Alur et al. (1993), which allows to observe the
evolution of continuous variables and the switch between
different discrete modes of operation. The library has al-
ready been applied to robotic problems, for example in

Muradore et al. (2011). In fact, it has been used also to
verify systems parametrically: in Benvenuti et al. (2012)
for dominance checking of hybrid controllers and in Ben-
venuti et al. (2014) for assume-guarantee verification. In
this paper, we formalize the methodology for parametric
verification and extend it in order to identify how to
partition the parameter space automatically. The purpose
of the proposed approach is to enable spatial analysis of
the system in a numerically conservative way, for example
to synthesize optimal control parameters with respect to
some properties.

Parametric analysis for hybrid automata has already been
explored in the current literature, for example in the
CORA tool of Althoff (2015) or the KeYmaera tool of
Fulton et al. (2015). These projects however focus on linear
or affine systems, while Ariadne is concerned with non-
linear behavior.

In the next Section we will describe our methodology and
its implementation in Ariadne. Sec. 3 describes in detail
the model for the case study, while in Sec. 4 the verification
setup and results are presented. Finally, Sec. 5 draws the
conclusions and mentions future developments.

2. PARAMETRIC ANALYSIS

Let us start the discussion by focusing on the evolution
of the continuous state, with particular attention to the
impact of parameters.

We introduce X as the finite set of n continuous variables
representing the continuous state space of the system.
Then we call x ∈ Rn an assignment of values for the
variables in X. Similarly, we consider P as the finite set
of m continuous parameters that occur in the model for
the system. In this case we assume that the parameters lie
within a compact domain Dp. We denote with p ∈ Dp an
assignment of values for the parameters in P .

Now we present the functions within an automaton model
where parameters may be used:

(1) Dyn`: dynamic function for each location `, where
ẋ = Dyn`(x,p) holds;

(2) Inv`: invariant function, which allows evolution within
a location `, active when Inv`(x,p) ≤ 0; multiple
invariant functions for the same location are allowed;

(3) Actτ : activation function for a given transition τ
from a location `1 to a location `2, active when
Actτ (x,p) ≥ 0;

(4) Resτ : reset function for a given transition τ from a
location `1 to a location `2, which determines the new
value for x on `2: x⇒ Resτ (x,p).

If Dp is a point, i.e., it has an empty interior, the function
is not parametrized and so it has only one possible behav-
ior, corresponding to a specific choice of the parameters.
Instead, if P has a non-empty interior, then the function
is parametrized with respect to p. In this context, we call
f (x,p) a singleton instance of the parametrized function.

The semantics of interval analysis of Moore et al. (2009)
establishes that the image of a function over an interval
is an overapproximation of the union of the images of
the function over all its points. We will use the square-
parentheses notation

f [x, Dp] ⊇
⋃

p∈Dp

f [x,p] (1)

to refer to such inclusion in terms of images.

In addition, let’s define D
(j)
p as a generic j-th subset of the

parametric domain. Now, we want to choose a collection

of subsets ∆p = {D(j)
p } such that

⋃
j D

(j)
p = Dp. It holds

f [x, Dp] ⊇
⋃

D
(j)
p

f
[
x, D(j)

p

]
⊇
⋃

p∈Dp

f [x,p] (2)

where we call f
(
x, D

(j)
p

)
a subset instance of the

parametrized function.

When a parametrized function f is used to model a
hybrid system S, we can similarly talk about parametrized
systems and their singleton/subset instances. We call
FS the set of parametrized functions in S. It is clear
that the aforementioned property on functions translates
to the following one: the behavior of a parametrized
system includes the union of the behaviors of its instances.
Consequently, from Eq. 2 we have:

ReachS (Dp) ⊇
⋃

D
(j)
p

ReachS

(
D(j)
p

)
⊇
⋃

p∈Dp

ReachS (p)

(3)

where ReachS represents the reached set of S from a given
initial point xI , up to a given evolution time tmax which
depends on the objective of the analysis. Eq. 3 states that
we can obtain an overapproximation of

⋃
p∈Dp

ReachS (p)

by using a finite amount of subset instances, where each in-
stance implies an independent analysis of the parametrized
system. Our ultimate goal is to use ReachS to identify the
behavior of the system as a function of p and subsequently
verify the given requirements.

2.1 Implementation

Applying Eq. 3, we analyze ReachS (p) ,∀p ∈ Dp by
discretizing the parametric space into ∆p. Consequently,
we should split Dp in the best possible way. For efficiency
purposes, we choose the condition

D(j1)
p ∩D(j2)

p = ∅,∀
(
D(j1)
p , D(j2)

p

)
∈ ∆p ×∆p. (4)

How do we choose ∆p? On one hand, since our analysis
time scales linearly with the number of subset instances,
we want to minimize the cardinality of ∆p. On the other
hand, from Eq. 1 we recognize that interval arithmetics in-
troduces an overapproximation proportional to the width
of the intervals involved; the application to a hybrid system
can be regarded as an addition of noise to the reached
set. Using very large intervals may therefore produce an
unacceptable signal-to-noise ratio in ReachS with respect
to the verification purposes. Additionally, if we want to
analyze the system as a function of the parameters’ values,
we may actually prefer relatively small intervals.

A simple approach would be to split Dp using disjoint
intervals of equal user-defined width for each parameter.
We obtain ∆p as the set of all the interval products, which
represents a regular tiling of Dp. This solution however

does not account for the impact that different values of a
parameter yield over the system behavior.

Therefore, a more adaptive approach requires to identify
the effect of varying the size of the subset instance. First,
the user provides the minimum desired widths Wmin =
{wpi,min}pi∈P for parameter intervals; the choice of a
width value may be determined by the precision of the
related parameter to control. Second, given a candidate

subset D
(j)
p , we evaluate

ρ(j) = max
f∈FS

r
(
f
[
D

(f,j)
x , D

(j)
p

])

r
(
f
[
D

(f,j)
x , D

(j)
p,min

]) (5)

which we call the spread ratio of the j-th parameter subset.
Here by r (f [·]) we refer to the radius of the image of

a given function f . In particular, D
(j)
p,min refers to the

subset having the same center as D
(j)
p and widths given

by Wmin. Finally D
(f,j)
x is a domain for x, calculated

for each function and each subset, which represents an
approximation of the reached set to be used in a static
analysis of the system. There are several possible choices
for calculation of this domain, depending on the desired
accuracy: currently we use the domain obtained from
ReachS (pc), i.e., the reached set of a singleton instance
corresponding to the center of Dp, since its computational
cost is independent of |∆p|.
Summarizing, Eq. 5 is the quadratic mean of ratios be-
tween the image radius for a given parameter subset and
the image radius of the corresponding subset with mini-
mized widths. It works as a replacement of the gradient
with respect to p, which is not available in the model.
Consequently, the evaluation of ρ(j) allows to determine
the local impact of the subset size. While it holds that

ρ(j) ≥ 1 if D
(j)
p has widths greater than Wmin, we want to

choose the largest D
(j)
p such that

ρ(j) < ρmax. (6)

Here ρmax is a user-defined numerical setting that deter-
mines the tolerance for the spread ratio.

Now that we have a measure to decide whether a candidate
parameter subset is acceptable, we need a procedure to
choose the actual candidates. Our approach relies on a top-
down partitioning of Dp according to a multidimensional
binary tree. We start by choosing Dp as a candidate and
we evaluate it: if it does not satisfy Eq. 6, then we split
it along the first parameter and evaluate the resulting two
candidates. Each time a candidate is not acceptable, we
split along the next parameter; the parameter to split
is therefore a function of the tree depth. This procedure
continues iteratively in a depth-first fashion, until either
we find a suitable candidate or the subset has widths lesser
thanWmin. The result is a partitioning ofDp, such that the
largest subsets correspond to the regions where parameters
have a smaller impact on the system evolution. The choice
of a binary tree representation (which is stored internally
using a binary decision diagram) is aimed at efficiency,
since it allows the storage of a large amount of subsets
with a minimum memory footprint. Other approaches may

clearly be envisioned, that explore the parameters space
using different cost metrics.

However, it should be noted that when replacing a subset
of parameters into FS , we are forced to decouple the
parameters by taking an interval for each parameter. This
operation translates into using the bounding box of the sub-
set domain: if ∆p = Dp, the resulting overapproximation
may be significant, but for |∆p| → ∞ such effect shrinks
to zero. Still, we are unable to guarantee Eq. 4 unless Dp

is itself an axis-aligned box.

Finally, given the fact that each splitting halves one
dimension of the parameter subset, a reasonable choice
for the spread ratio tolerance, under the assumption that
FS is linear in P , is ρmax = 2.

2.2 Configuration

While the methodology above is sound, in our implemen-
tation by an automated routine in Ariadne we allow
two user-defined configuration settings: ρmax and Wmin.
This flexibility is sometimes necessary for fine-tuning the
verification, to account for the numerical limitations that
the ρ criterion shows with respect to the complexity of the
dynamics of the system.

Yet, in certain cases this may still be insufficient, particu-
larly for multi-dimensional parametric spaces coupled with
non-linear system dynamics. In those situations, the high
overapproximation noise due to system parametrization
may prevent the verification altogether.

To overcome such drawback, we offer the ability to use
points instead of intervals for one or more parameters. The
choice of ∆p is the same as in the previous Subsection;
however, when analyzing the system, we replace the inter-
val for a chosen parameter pi with its midpoint. Since we
are sampling the parametric space, the spatial information
gathered by the analysis is limited and sometimes the
results are not rigorous. Still, based on the verification
problem, it may be sufficient to use intervals only for the
most important parameters: this is usually the case when
the remaining parameter values are quantized anyway.

3. CASE STUDY MODELING

We model the paint spraying system using three automata,
each related to the dynamics of a specific set of variables:

(1) The position x = (x, y) of the sprayer and the velocity
vx;

(2) The exposure s to the spray at a certain observation
point xo = (xo, yo);

(3) The paint deposition z at xo.

The corresponding automata are shown in Figs. 1,2,3. All
transitions are assumed as urgent, meaning that implicit
invariants exist such that the automaton leaves a discrete
state as soon as a transition is active.

Before describing each automaton in detail, we can sum-
marize the behavior of the system as follows: given a planar
surface, the paint sprayer performs a linear trajectory
along x for a given width H, after which it shifts by an
amount d along y and reverses its direction for another
pass, and so on. The footprint of the spray on the surface

moving

ẋ = vx
ẏ = 0

v̇x = 0

x ≥ H

y ⇒ y + d

vx ⇒ −vx

x ≤ 0

y ⇒ y + d

vx ⇒ −vx

Fig. 1. The automaton for sprayer position x = (x, y) and
speed vx.

is a circle with radius L; however, the spatial deposition
of the color in a given instant is nonlinearly proportional
to the distance from the center of the circle.

3.1 Automaton for sprayer trajectory

The automaton that models the trajectory of the sprayer
spot, shown in Fig. 1, requires one location only: such
location is called moving, where we set the dynamics for
the position x and the speed vx; the speed vy is neglected,
since we are going to model the y shift as instantaneous for
simplicity. This is due to the fact that we are not interested
in the behaviour near the borders of the painted surface:
for the same reason, we do not model acceleration and
deceleration when reversing the velocity. The conditions
x ≥ H and x ≤ 0 determine when the transition is
taken. The⇒ symbol stands for the reset operation, which
updates the value of a variable after the transition is taken.

3.2 Automaton for spraying exposure

The automaton for the spraying exposure s, shown in
Fig. 2, is a ”support” automaton which provides a measure
of the incidence of the sprayer over the observed point
xo = (xo, yo). The value of s ranges between 0.0 and
1.0, with a maximum when the sprayer is centered at
(xo, yo), and a minimum as soon as the distance is greater
or equal to the sprayer radius L. Therefore, two locations
are present: the far one, where ||x − xo|| ≥ L, and the
close one, where ||x − xo|| ≤ L. While s remains zero in
the far location, its expression in the close one is modeled
as a raised cosine function:

s =
1

2
+

1

2
cos

[
π

(
||x− xo||

L

)2
]
. (7)

In particular, when modeling in Ariadne we use the
square of the distance since the norm function has numeri-
cal issues around zero: the norm function requires a square
root, whose domain may partially fall into the negatives
when overapproximations are involved.

Since dynamics in Ariadne are provided in differential
form, by calculating the total derivative of s over time we
obtain:

ṡ = −vxπ
L2

(x− xo) sin

[
π
||x− xo||2

L2

]
. (8)

far

ṡ = 0

close

ṡ = − vxπ
L2 (x− xo) sin

[
π
||x−xo||2

L2

]

||x− xo||2 ≤ L2 ||x− xo||2 ≥ L2

Fig. 2. The automaton for the exposure s to the spray.

depositing

ż = ks

Fig. 3. The automaton for paint deposition z at xo.

3.3 Automaton for paint deposition

The automaton for the behavior of paint deposition z is
shown in Fig. 3. Only one location is required, with no
transitions: the derivative of z reacts in a proportional way
to the exposure, with a constant given by k.

4. VERIFICATION

In this Section we define the objectives of verification,
specify the setup and comment on the results that Ari-
adne is able to provide.

As anticipated in the Introduction, the objectives are the
following:

(1) Limit the spatial deviation in the deposition of paint
on the surface;

(2) Keep the deposition of paint below a maximum value.

Combining the two objectives, we identify a lower thresh-
old zmin = 180µm and an upper threshold zmax = 220µm,
i.e., we allow a deviation of ±10% around a deposition of
200µm. Consequently, our verification objective becomes:

zmin ≤ z ≤ zmax (9)

where we remind here that Ariadne will always yield a
deposition value within an interval.

The parameter set that we choose for the verification is
P = {d, V, yo}, with

• d: the distance between sprayer passes, introduced to
identify how it affects the spatial distribution;

• V : the modulus of the sprayer velocity, introduced to
identify how it affects the deposition amount;

• yo: the y coordinate of the observation point, used to
check the spatial distribution of paint deposition in
the direction orthogonal to spraying.

The remaining possible parameters are treated as con-
stants, by choosing L = 1 cm, xo = L, H = 2L, k = 0.001.
Given X = {s, vx, x, y, z}, the initial set is {0, V, 0, 0, 0}
and the exposure automaton starts from the far location.

The domain for the parameters is

Dp = {[L/4, L] , [5 cm/s, 40 cm/s] , [4d, 4d+ d/2]} . (10)

In particular, we chose a domain width for yo equal to d/2
due to the apparent y symmetry of the paint deposition
in respect to the spray pass line. The maximum value
for d equal to L is reasonable: in other terms, we want
at least two passes to affect the region between two
lines; the minimum value instead implies that four passes
contribute to the total deposition on any point in such
region. Additionally, the choice of a minimum yo value of
4d guarantees that all the passes that would affect Dyo
are always performed. This implicitly means that after we
have covered a distance of 8d along y, we do not need to
evolve the system further: this represents our termination
condition for the system, which otherwise would evolve
indefinitely. Also notice that we put the observation point
xo in the center of the spray pass line, and chose H such
that the line is as short as necessary in respect to L.

Summarizing, we made some choices regarding constant
values and parametric domain with the purpose of re-
ducing the (X,P) space of the system to the minimum
required, thus minimizing the verification time. On the
contrary, if for example we decided for an axis-aligned box
for Dp, we would have considered the worst case scenario
for yo and used the [L, 2L] interval instead. Apart from
having a larger interval width, the resulting domain also
covers regions of the parametric space in which we are not
actually interested: it can be shown that the volume of Dp

is more than twice compared to our solution.

Now that we described completely the system model, we
can notice a peculiarity: the parameter V actually does
not appear anywhere within the functions, but it enters as
an initial value. From Fig. 1, V affects indirectly the value
of vx. According to Eq. 5, the impact of V comes from

D
(f,j)
x rather than D

(j)
p . Consequently, we can see that a

parameter is not required to appear in any f directly, as

long as it influences D
(f,j)
x . For comparison, y0 influences

directly the dynamics and guards of Fig. 2, while d appears
in the resets of Fig. 1.

As discussed in Sec. 2, since we are allowed to use
points instead of intervals for some parameters, here, we
adopt this simplification for d and V . The motivation is
that these two parameters are not critical, while on the
other hand yo must be analyzed continuously to identify
the spatial range of values. Finally, we choose Wmin =
{0.4mm, 20mm/s, 50µm} and ρmax = 2.

4.1 Results

First, Fig. 4 details the spatial behavior of the deposition
over yo for some values of V , in particular the minimum,
maximum and central points of the velocity domain; we
chose d = L for these samples. First we notice that z
is expressed as an interval, which takes into account the
overapproximation noise. The fact that the noise is larger
towards the right (i.e., towards the midpoint between two

41 42 43 44
0

100

200

300

yo(mm)

z
(µ
m
)

Fig. 4. The z curves for d = L and different values of V :
{5cm/s, 22.5cm/s, 40cm/s}, from top to bottom.

4d 4d+ d/2
0

50

100

150

yo

z
(µ
m
)

Fig. 5. The z curves for V = 40 cm/s and different values
of d: {L/4, L/3, L/2, 3L/4, L}, from top to bottom.

passes) is due to the increasing superposition of the passes,
while on the leftmost point only one pass contributes to
the deposition. We can also see that the relation between
z and V is non-linear. Finally, even if not apparent from
the figure, the curves have the same shape regardless of
the velocity.

Fig. 5 instead shows how the deposition varies along yo for
different values of d. Please note that we spread the results
along a common [4d, 4d+ d/2] domain for yo. From the
{L/4, L/3, L/2, L} subset, we can see that the deposition
is linear with respect to the number of passes that affect a
given yo. However, the more passes interact, the larger the
numerical issues: in practice, the overapproximation noise
cancels information on the curve and limits observability
to the minimum/maximum values. The width of such noise
clearly increases as d decreases.

Finally, in Fig. 6 we summarize how the deposition sat-
isfies Eq. 9 while choosing subsets for all the parameters
according to Dp and Wmin. We take the convex hull of
z for all the yo results, in order to project on the d − V
subspace. While for d and V we analyze by points rather
than by intervals, for graphical reasons we plot the results
within boxes. A grey box implies that only the midpoint
of z lies within the required bounds, while a black box
implies Eq. 9 is satisfied for all z.

V (cm/s)

d

L/4

L

0.05 0.4

Fig. 6. Verification results for all the d-V samples: grey
boxes imply that the average z is within the bounds,
black boxes that all z values are within the bounds.

It must be remarked that finer Wmin values would have
yielded a more accurate curve, but still we can infer
that the behavior is near-hyperbolic, where on the lower-
left region we have an excessive deposition, and on the
upper-right region an insufficient deposition. However,
lower values of d turn out to yield a larger range of
valid V values. We also calculated the optimal d-V point
for painting speed, expressed by the d × V product, as
(d = 0.25, V = 0.33).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a sound methodology for
performing parametric formal verification of a system. The
paint spraying case study showed that it is possible to
extract optimal design values in a numerically conservative
way, such that the desired system properties are guaran-
teed with respect to the provided model. Future work on
this specific topic will focus on studying different parti-
tioning techniques, and on exploiting more sophisticated
spread ratio measures.

In terms of numerical issues, we recognize that comput-
ing reachable sets for multiple parameters introduces a
significant overapproximation noise, which must be dealt
with. There exist several ways to increase the capabilities
of Ariadne to perform analysis for multidimensional pa-
rameter spaces. Currently, we are working to improve the
continuous evolution routines to better control the error.
Moreover, a significant advantage would be the ability to
analyze each automaton in isolation, by substituting an
input variable with a differential inclusion, as in Zivanovic
and Collins (2010). This enhancement in general would
enable contract-based design (see Nuzzo et al. (2015)),
which simplifies the translation of design requirements into
formal verification procedures.

REFERENCES

Althoff, M. (2015). An introduction to CORA 2015.
In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015.

Alur, R., Courcoubetis, C., Henzinger, T.A., and Ho, P.H.
(1993). Hybrid automata: An algorithmic approach

to the specification and verification of hybrid systems.
In Hybrid Systems, volume 736 of LNCS, 209–229.
Springer, Lyngby, Denmark.

Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti,
L., and Villa, T. (2012). Ariadne: Dominance checking of
nonlinear hybrid automata using reachability analysis.
In Proc. of the 6th International Workshop on Reacha-
bility Problems (RP12), volume 7550 of LNCS, 79–91.
Springer Berlin Heidelberg.

Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti,
L., and Villa, T. (2014). Assume-guarantee verification
of nonlinear hybrid systems with ARIADNE. Int. J.
Robust. Nonlinear Control, 24(4), 699–724.

Biegelbauer, G., Pichler, A., Vincze, M., Nielsen, C.L.,
Andersen, H.J., and Haeusler, K. (2005). The inverse
approach of flexpaint [robotic spray painting]. IEEE
Robotics Automation Magazine, 12(3), 24–34.

Bresolin, D., Guglielmo, L.D., Geretti, L., Muradore, R.,
Fiorini, P., and Villa, T. (2012). Open problems in veri-
fication and refinement of autonomous robotic systems.
In Digital System Design (DSD), 2012 15th Euromicro
Conference on, 469–476.

Chen, H., Xi, N., Sheng, W., Dahl, J., and Chen, H.
(2005). Analysis of system performance for robotic spray
forming process. In 2005 IEEE/RSJ Intern. Conference
on Intelligent Robots and Systems, 1396–1401.

Collins, P., Bresolin, D., Geretti, L., and Villa, T. (2012).
Computing the evolution of hybrid systems using rig-
orous function calculus. In Proc. of the 4th IFAC
Conference on Analysis and Design of Hybrid Systems
(ADHS12), 284–290. Eindhoven, The Netherlands.

Fulton, N., Mitsch, S., Quesel, J., Völp, M., and Platzer,
A. (2015). KeYmaera X: An aXiomatic tactical theorem
prover for hybrid systems. In Proceedings of the Interna-
tional Conference on Automated Deduction, CADE’15,
Berlin, Germany, volume 9195, 527–538. Springer.

Gasparetto, A., Vidoni, R., Pillan, D., and Saccavini,
E. (2012). Automatic path and trajectory planning
for robotic spray painting. In Robotics; Proceedings of
ROBOTIK 2012; 7th German Conference on, 1–6.

Goodman, E.D. and Hoppensteradt, L.T.W. (1991). A
method for accurate simulation of robotic spray appli-
cation using empirical parameterization. In Robotics
and Automation, 1991. Proceedings., 1991 IEEE Inter-
national Conference on, 1357–1368 vol.2.

Moore, R.E., Kearfoot, R.B., and Cloud, M.J. (2009).
Introduction to Interval Analysis. SIAM.

Muradore, R., Bresolin, D., Geretti, L., Fiorini, P., and
Villa, T. (2011). Robotic surgery. IEEE Robotics
Automation Magazine, 18(3), 24–32.

Nuzzo, P., Sangiovanni-Vincentelli, A.L., Bresolin, D.,
Geretti, L., and Villa, T. (2015). A platform-based
design methodology with contracts and related tools for
the design of cyber-physical systems. Proceedings of the
IEEE, 103(11), 2104–2132.

Yu, Q., Wang, G., and Chen, K. (2015). A robotic spraying
path generation algorithm for free-form surface based
on constant coating overlapping width. In Cyber Tech-
nology in Automation, Control, and Intelligent Systems
(CYBER), 2015 IEEE Intern. Conf. on, 1045–1049.

Zivanovic, S. and Collins, P. (2010). Numerical solutions
to noisy systems. In 49th IEEE Conference on Decision
and Control (CDC), 798–803.

