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Abstract— A numerical method for rigorous over-
approximation of a solution set of an input-affine system
whose inputs represent some bounded noise is presented. The
method gives high order error for a single time step and a
uniform bound on the error over the finite time interval. The
approach is based on the approximations of inputs by linear
functions at each time step. We derive the single-step error in
the one-dimensional case, and give the formula for the error in
higher dimensions. As an illustration of the theory presented,
a rigorous numerical result is given.

I. INTRODUCTION

In this paper, we study systems of the form

ẋ(t) = f (x(t),v(t)) , x(t) ∈ Rn, v(t) ∈V ⊂ Rm,

where f : Rn × Rm → Rn is a smooth function, V is a
compact set and v(t) is a measurable function known as the
disturbance input. The reason we assume that disturbance
input is a measurable function is because we can rewrite the
above equation in the form

ẋ(t) ∈ f (x(t),V ) = F(x(t)),

where F is a multivalued map, and obtain a differential
inclusion describing the evolution. Differential inclusions are
a generalization of differential equations having multivalued
right-hand sides [2], [5], [13]. In this paper, we are interested
in algorithms for computing rigorous over-approximations to
the reachable sets of a differential inclusion.

The correspondence between differential inclusions and
systems with bounded noise has attracted people from control
community to have an interest in differential inclusions and
their numerical solution. For example, if the system is not
completely controllable, one may want to know (compute)
the set of all solutions. On the other hand, if we want to com-
pute a solution of high dimensional system ẋ(t) = f (x(t)), by
performing system reduction, and we would like to obtain an
over-approximation of the solution set, then desired reduced
system corresponds to a differential inclusion ż(t) = g(z(t))±
ε . In particular, when there is an absence of a control law,
or there is a variety of available dynamics, or there is an
uncertainty involved, one needs differential inclusions. In
general, differential inclusions have applications in many
areas of science, such as mechanics, electrical engineering,
the theory of automatic control, economical, biological, and
social macrosystems.
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The first result on the computation of the solution set
of a differential inclusion was given by Puri, Varaiya and
Borkar [11], who considered Lipschitz differential inclu-
sions, ẋ(t) ∈ F(x), x(0) = x0 and gave a polyhedral method
for obtaining an approximation of the solution set S(x0) to an
arbitrary known accuracy. In the case where F is only upper-
semicontinuous with compact, convex values, it is possible
to compute arbitrarily accurate over-approximations to the
solution set, as shown in [4].

Some different techniques and various types of numerical
methods have been proposed as approximations to the solu-
tion set of a differential inclusion. For example, ellipsoidal
calculus was used by Valyi and Kurzhanski [10], Lohner-type
algorithm by Zgliczynski and Kapela [16], grid methods by
Puri, Varaiya, and Borkar [11], also by Beyn and Rieger [3],
discrete approximations by Dontchev and Farkhi [6], also
by Grammel [8]. However, these algorithms either do not
give rigorous over-approximations, or are approximations of
low-order (Euler approximations with a first-order single-
step truncation error). Essentially, the only algorithms that
could give higher order error estimates are the ones that use
grids. However, higher order discretization of a state space
highly effects efficiency of the algorithm. It was noted in [3]
that if one is trying to obtain higher order error estimates on
the solution set of differential inclusions then grid methods
should be avoided.

In this paper we give a higher-order method for the
rigorous over-approximation of the solution set of an input-
affine differential inclusion. The method we give yields
third-order single-step truncation error, though in principle
it should be possible to give a higher-order method.

In Section II, we give some notes on mathematical back-
ground for the theory used and state the problem that we
consider. In Section III, we give details on the approximation
equation, and we give formulas for computation of the
local error obtaining O(h), O(h2), O(h3). In Section IV, we
derive a formula for error computation in one-dimension.
The algorithm is presented in Section V, and a rigorous
numerical result is given in Section VI. We conclude the
paper in Section VII, by giving an overview of the work
presented, and pointing out possible extensions.

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Mathematical Background

Below we give several results on differential inclusions
and their computability. For further inquiry on the theory
of differential inclusions see [2], [5], [13], for computability
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theory see [15], and for results on computability of differen-
tial inclusions see [11], [4].

First, by an over-approximation P′ to a set P, we mean that
P⊆ P′. A solution of a differential inclusion is an absolutely
continuous function x : [0,T ]→ Rn, such that for almost all
t ∈ [0,T ], x(·) is differentiable at t and ẋ(t) ∈ F(x(t)). If
x(0) = x0, the solution set S(x0)⊂C([0,T ],Rn) is defined as

S(x0) = {x(·) ∈C([0,T ],Rn) | x(·) is a solution
of ẋ ∈ F(x) with x(0) = x0}.

The solution set at time t, S(x0, t)⊂ Rn, is defined as

S(x0, t) = {x(t) ∈ Rn |x(·) ∈ S(x0)}.

Theorem 1: Let D ⊂ Rn and F : [0,T ]×D ⇒ Rn be an
upper semicontinuous set-valued mapping, with non-empty,
compact and convex values. Assume that ||F(t,x))|| ≤ c(1+
||x||), for some constant c, is satisfied on [0,T ]. Then for
every x0 ∈ D, there exists an absolutely continuous function
x : [0,T ]→ Rn, such that x(t0) = x0 and ẋ(t) ∈ F(t,x(t)) for
almost all t ∈ [0,T ].

The proof of the theorem can be found in [2] and [5]. We
continue by stating the result on upper-semicomputability of
differential inclusions. The proof of the following theorem
can be found in [4].

Theorem 2: Let F be an upper-semicontinuous multival-
ued function with compact and convex values. Consider the
initial value problem ẋ ∈ F(x), x(0) = x0, where F is defined
on some open domain V ⊂ Rn. Then the solution opera-
tor x0 7→ S(x0) is upper-semicomputable in the following
sense: Given an enumerator of all tuples (I,K1, ...,Km) such
that F(Ī) ⊂ ∪m

i=1Ki, it is possible to enumerate all tuples
(I,J,K1, ...,Km) where I,K1, ...,Km are open rational boxes
and J is an open rational interval such that for every x0 ∈ I,
every solution ξ with ξ (0) = x0 satisfies ξ (J̄)⊂ ∪m

i=1Ki.

In this paper we shall need the multidimensional mean
value theorem, which can be found in standard textbooks on
real analysis book, e.g., see [14]. We use the following form
of the theorem.

Theorem 3: Let V ⊂ Rn be open, and suppose that f :
Rn→ Rm is differentiable on V. If x,x+h ∈V and L(x;x+
h)⊆V , i.e., line between x and x+h belongs to V , there is
a t ∈ [0,1] such that

f (x+h)− f (x) =
∫ 1

0
D f (x+ th)dt ·h

where D f denotes Jacobian matrix of f , and integration is
understood component-wise.

In Section IV, we will use inequality given below to get
certain estimates on the error. The inequality uses logarithmic
norm which we define first. We take the following definition
and the theorem from [9]. The proof of the theorem can also
be found in there.

Definition 4: Let Q be a square matrix. Then

λ (Q) = lim
h→0+

||I +hQ||−1
h

is the logarithmic norm of Q.
Theorem 5: Suppose that we have estimates

λ (D f (t,z(t))) ≤ l(t), for z(t) ∈ conv{x(t),y(t)} and
||ẏ(t) − f (t,y(t))|| ≤ δ (t), ||x(t0) − y(t0)|| ≤ ρ . Then for
t ≥ t0 we have

||y(t)− x(t)|| ≤ e
∫ t
t0

l(s)ds
(

ρ +
∫ t

t0
e−

∫ t
t0

l(s)ds
δ (s)

)
.

The numerical results given in Section VI were obtained
by using the tool for reachability analysis and verification
of real systems, Ariadne (see [1]). The main functionality
used in Ariadne are Taylor models which were developed
by Berz and Makino over the past decade. Taylor models
(see [12] and references therein), provide rigorous functional
inclusion method. The approximations are given in a form
of polynomial (defined over a suitably small domain) plus
an interval remainder.

Definition 6: Let f : D ⊂ Rv → R be a function that is
(n+1) times continuously partially differentiable on an open
set containing the domain D. Let x0 ∈ D and P an nth order
polynomial of f around x0. Let I be an interval such that
f (x) ∈ P(x− x0) + I, for all x ∈ D. Then we call the pair
(P, I) an nth order Taylor model of f around x0 on D.

B. Problem Formulation

In this paper, we restrict attention to the input-affine
system

ẋ(t) = f (x(t))+
m

∑
i=1

gi(x(t))vi(t); x(t0) = x0. (1)

We assume that
• f : Rn→ Rn is a C2 function,
• each gi : Rn→ Rn is a nonzero continuous function,
• vi(·) is a measurable function such that |vi(t)| ≤ Ai for

some positive real numbers Ai.
The solution set S(x0, t) of the system (1) exists (on some

interval of existence, say [0,T ]), and is equivalent (e.g., see
[2]) to the solution set of the differential inclusion obtained
by replacing each vi(t) by the set [−Ai,+Ai] in (1).

The aim of this paper is to give methods to compute
concrete over-approximations Sk to the solution sets S(x0, tk)
for a sequence of rational time points tk. We can also derive
over-approximations to the solution set over a time step,
S(x0, [tk, tk+1]).

III. SINGLE-STEP APPROXIMATION

In order to compute over-approximation to the solution
set in (1), we compute solution set of a different (an
approximate) differential equation and add the uniform error
bound on the difference of the two solutions. In this section,
we set up the problem of an approximation and give formulas
for the uniform error bound.

A. Setting up an approximation

Let [0,T ] be the interval of existence of (1), let h be
a time step size, and set tk = hk. For x ∈ Rn and v(·) ∈
L∞([tk, tk+1];Rm), define φ(xk,v(·)) to be the point xk+1
which is the value at time tk+1 of the solution of ẋ(t) =
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f (x(t),v(t)) with x(tk) = xk. For each time step we need to
compute an over-approximation Sk+1 to the set

{φ(xk,v(·)) | xk ∈ Sk and v(·) ∈ L∞([tk, tk+1];Rm)}.

We assume that all disturbances are restricted to the space of
bounded measurable functions which is infinite-dimensional.
Thus, we aim to approximate the set of all solutions by
restricting the disturbances to a finite-dimensional space.
Consider a set of approximating functions w(a, ·) parame-
terised by a ∈ A⊂Rp. We then need to find an error bound
ε such that

∀vk ∈ L∞([tk, tk+1];Rm), ∃ak ∈ A

s.t. ||φ(xk,vk(·))−φ(xk,w(ak, ·))|| ≤ ε.

Setting φ̃(x,a) = φ(xk,w(a, ·)), i.e. φ̃ also denotes the solu-
tion of ẋ(t) = f (xk,w(ak, ·)), with x(tk) = xk, at t = tk+1, we
obtain the approximation

Sk+1 = {φ̃(xk,ak)± ε | xk ∈ Sk and ak ∈ A}.

Define the approximate system at time step k by

ẏ(t) = f (y(t))+
m

∑
i=1

gi(y(t))wi(t); y(tk) = yk, t ∈ [tk, tk+1].

(2)
We would like to choose approximating functions wi =
w(ai, ·) : [tk, tk+1]→ R, depending on x(tk) and vi(·), such
that the solution of (2) is an approximation of high order to
the solution of (1).

B. Formulas for the uniform error bound

Our aim is to compute an over-approximation of the
solution set in (1). In order to do that, first, we compute an
over-approximation of the solution set at time t1. Initially, we
can assume x(t0) = y(t0). We denote the over-approximation
at time t1 by S1, which we take to be the set of initial points
of original system and its approximation for the next time
step. Therefore, we assume that x(t1) = y(t1). By repeating
this procedure at each time step, we can, without loss of
generality, assume that x(tk) = y(tk), for all k ≥ 0.

If we take wi(·) = 0, then an approximation of O(h) is
obtained. Using Theorem 5, one can get the formula for the
calculation of the error. Let B be a bound on the solutions
of (1) and (2) for all t ∈ [0,T ], and assume that

|vi(·)| ≤ Ai, || f (z(t))|| ≤ K, ||gi(z(t))|| ≤ Ki

||D f (z(t))|| ≤ L, ||D2 f (z(t))|| ≤ H, λ (D f (·))≤ Λ, (3)

for each i = 1, ...,m, and for all t ∈ [0,T ], and z(·) ∈ B. The
formula that gives a bound on the local error at tk+1 is

||x(tk+1)− y(tk+1)|| ≤
eΛh−1

Λ

(
m

∑
i=1

Ai Ki

)
. (4)

Note that (eΛh − 1)/Λ ≈ h + Λh2/2 + ... is O(h). In fact,
inequality above was obtained in [16] as the logarithmic
norm estimate on the perturbations of ODEs.

To derive an error of higher order we consider the follow-
ing two cases.

1) Simple equations: In addition to the assumptions that
we had so far, in this subsubsection we assume that gi(·)
are C1 functions with ||Dgi(·)|| ≤ Li. Let wi(t) be constant,
in particular, suppose that we obtain (bounds on) wi(·) by
solving the following integral equality∫ tk+1

tk
vi(t)−wi(t)dt = 0,

for all i = 1, ...,m. It is easy to see that |wi(t)| ≤ Ai, for all
t ∈ [tk, tk+1). Hence, the local error can be computed using
the formula

||x(tk+1)− y(tk+1)|| ≤ h2

(
m

∑
i=1

Li Ai

)(
K +

m

∑
i=1

Ai Ki

)

+2h

(
L+

m

∑
i=1

Li Ai

)(
m

∑
i=1

Ai Ki

)
eΛh−1

Λ
.

which is of O(h2). However, with the same assumptions
above we can get an approximation of O(h2)+ O(h3). The
formula is

(1−Lh−h
m

∑
i=1

Li Ai)||x(tk+1)− y(tk+1)|| ≤

h2

2

(
HK +

m

∑
i=1

HKiAi +L2 +

(
3L+2

m

∑
i=1

Ai Li

)
m

∑
i=1

Ai Li

)

×

(
m

∑
i=1

KiAi

)
eΛh−1

Λ

+h2

(
L
4

(
m

∑
i=1

KiAi

)
+

(
m

∑
i=1

LiAi

)(
2K +3

m

∑
i=1

KiAi

))
.

(5)

Now, if we assume that wi(t) = ai,0 + ai,1(t− (tk + h/2))
is linear, and ∫ tk+1

tk
vi(t)−wi(t)dt = 0∫ tk+1

tk
(vi(t)−wi(t))(t− (tk +h/2))dt = 0,

(6)

hold (which we use to find bounds for |ai,0|, |ai,1| and
|wi(t)|), then the formula is

(1−Lh−h
m

∑
i=1

Li Ai)||x(tk+1)− y(tk+1)|| ≤

7h2

8

(
HK +

5
2

m

∑
i=1

HKiAi +L2 +

(
9
2

L+5
m

∑
i=1

Ai Li

)
m

∑
i=1

Ai Li

)

×

(
m

∑
i=1

KiAi

)
eΛh−1

Λ

+
h2

4

(
m

∑
i=1

LiAi

)(
11K +

69
2

m

∑
i=1

KiAi

)

+
7h3

48

(
m

∑
i=1

H Ki Ai +LLi Ai

)(
K +

m

∑
i=1

Ki Ai

)
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It is not clear which of the above formula gives tighter
bounds. This will depend on the values of constants and
the value of time step h. However, if the noise is additive
or m = 1, then the last case (when wi(·) is linear) can be
derived even more to give us an error of O(h3).

2) Full approximation: In this paper, we aim to obtain
an approximation error of O(h3) per time-step. To do this,
we require that wi(t) = (w1

i (t), ...,w
n
i (t)) is a vector valued,

whose each component w j
i (t) = a j

i,0 +a j
i,1(t− (tk +h/2)) is a

linear function and satisfies the following integral equalities∫ tk+1

tk
vi(t)g

j
i (x(t))−w j

i (t)g
j
i (y(t))dt = 0∫ tk+1

tk
(vi(t)g

j
i (x(t))−w j

i (t)g
j
i (y(t)))(t− (tk +h/2))dt = 0.

(7)
for all i = 1, ...,m and j = 1, ...,n. Solving the above system
of equations we can get bounds for coefficients a j

i,0, a j
i,1,

and bounds on w j
i (t). If we denote by 0 < K j,l

i ≤ |g
j
i (z(t))| ≤

K j,u
i assuming 16(K j,l

i )2−3(K j,u
i )2 > 0, then bound for each

w j
i (t) is

|w j
i (t)| ≤ 2K j,u

i Ai
8(K j,l

i )2− (K j,u
i )2 +12K j,l

i K j,u
i

K j,l
i (16(K j,l

i )2−3(K j,u
i )2

= AiCi j

If we use Euclidean norm for the vector norm in Rn, we
get the formula for computation of the local error of O(h3),
which is

(1−Lh/2)(x(tk+1)− y(tk+1))≤
h3

24
H(K +BA)

n

∑
i=1

n

∑
j=1

K j,u
i A j(1+Ci j)

√
n

+
h2

4

H K +H

√√√√ n

∑
i=1

(
n

∑
j=1

K j,u
i Ci j

)2

+L2


×

√√√√ n

∑
i=1

(
n

∑
j=1

K j,u
i A j (1+Ci j)

)2
eΛh−1

Λ
.

(8)

There is a trade off in using the approximation given in
III-B.2 vs. the ones given in III-B.1. A comparison of the
methods proposed in terms of the error and computational
complexity will be presented elsewhere.

The local error at time tk, consists of two parts. The
first part is the analytical error obtained as the difference
of the solution of the exact equation (1) and the solution
of its approximate equation (2), e.g. the formula given by
inequality (8). The second part is the numerical error which
is an interval remainder of the Taylor model representing
an inclusion of the solution y(tk) (see Definition 6). We
represent the solution set Sk = {h(s)± ε |s ∈ [−1,+1]}, at
time tk, as a Taylor model whose interval remainder consists
of both numerical and analytical error. This guarantees the
inclusion S(tk) ⊆ Sk, where S(tk) is the solution set of (1),
at time tk. Thus, Sk is the desired over-approximation of the
solution set S(tk).

The reason we seek local error of O(h3) is so that if we
were to compute the global error (cumulative error for the

time of computation, [t0,T ]), then we can expect it to be
roughly of O(h2). Our method only guarantees a local error
of O(h3) at the sequence of rational points {tk} which is
appriori chosen. However, if one is trying to estimate the
error at times tk < t < tk+1 for any k, a different formula
should be used, e.g. a logarithmic norm estimate Theorem
5. In this case we cannot guarantee local error of third order.

IV. DERIVATION OF ERROR ESTIMATES

In this section we derive O(h3) local error bound in the
one-dimensionional case with additive noise, i.e. we assume
that n = 1, m = 1, and g(·) = 1, |v(t)| ≤ A (in general, if
g(·) = c, we can set g(·) = 1, and |v(t)| ≤ Ac).

The input-affine system and its approximation are

ẋ(t) = f (x(t))+ v(t), x(tk) = xk; (9)
ẏ(t) = f (y(t))+w(t), y(tk) = yk. (10)

If w = 0, the local error is |x(tk+1)−y(tk+1)| ≤ 2A eΛh−1
Λ

. If
w =

∫ tk+1
tk v(s)ds, then the local error is |x(tk+1)− y(tk+1)| ≤

2LAh eΛh−1
Λ

. On the other hand, if w(·) is a linear function,
which we find by solving the following integral equalities∫ tk+1

tk
v(t)−w(t)dt = 0 (11)∫ tk+1

tk
(v(t)−w(t))(t− (tk +h/2))dt = 0, (12)

then we get that w(t) = a0 + a1(t− (tk + h/2)) is explicitly
given in terms of first and second integrals of v(·) over the
time step. In particular, a0 = (1/h)v̂, a1 = (12/h3) ˆ̂v, where

v̂ =
∫ tk+1

tk
v(t)dt; ˆ̂v =

∫ tk+1

tk
v(t)(t− (tk +h/2))dt. (13)

From above, it is easy to see that |w(t)| ≤ 5A/2. Since we
take xk = yk, the error over time step is computed by the
following:

x(tk+1)− y(tk+1) =
∫ tk+1

tk
f (x(t))− f (y(t))dt

+
∫ tk+1

tk
v(t)−w(t)dt

By (11) the second term on the right is zero. Integrating by
parts the first term, we get

x(tk+1)− y(tk+1) =
[
(t− tk)( f (x(t))− f (y(t)))

]tk+1
tk

−
∫ tk+1

tk
(t− tk)

( d
dt

f (x(t))− d
dt

f (y(t))
)

dt

= h( f (x(tk+1))− f (y(tk+1)))

−
∫ tk+1

tk
(t− tk)

(
f ′(x(t)) ẋ(t)− f ′(y(t)) ẏ(t)

)
dt

Note that we can rewrite the following

f ′(x(t)) ẋ(t)− f ′(y(t)) ẏ(t)
= f ′(x(t))(ẋ(t)− ẏ(t))+( f ′(x(t))− f ′(y(t))) ẏ(t)
= f ′(x(t))( f (x(t))− f (y(t)))+ f ′(x(t))(v(t)−w(t))

+( f ′(x(t))− f ′(y(t)))ẏ(t).
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By Mean Value Theorem, there exists z(·) such that f (x(t))−
f (y(t)) = f ′(z(t))(x(t)− y(t)), and therefore, we get

x(tk+1)− y(tk+1) =
h f ′(z(tk+1))(x(tk+1)− y(tk+1)) (14)

−
∫ tk+1

tk
(t− tk) f ′(x(t)) ( f (x(t))− f (y(t))) dt (15)

−
∫ tk+1

tk
(t− tk) f ′(x(t))(v(t) − w(t))dt (16)

−
∫ tk+1

tk
(t− tk)

(
f ′(x(t))− f ′(y(t))

)
ẏ(t)dt. (17)

Denote by [0,T ] an interval of existence for (9) and (10).
Let D⊂Rn be a compact region, such that if z(t) is a solution
to (9) or (10) with z(0) = z0 ∈ D then | f (z(t))| ≤ K for all
z ∈ D and all t ∈ [0,T ]. Since f is a C2 function, then first
and second order derivatives are uniformly bounded on D.
Therefore, there exist Lipschitz constants L and H such that
| f ′(·)| ≤ L and | f ′′(·)| ≤ H. Notice that

|ẋ(t)| ≤ K +A, and |ẏ(t)| ≤ K +5A/2.

On the other hand, it is useful to see that |ẋ(t)− ẏ(t)| ≤
Λ|x(t)− y(t)|+ 7A/2 where Λ is the bound on the loga-
rithmic norm of f ′, i.e., λ ( f ′(·))≤ Λ. The above inequality
follows from (5). Solving this differential inequality we get
|x(t)−y(t)| ≤ 7A

2
eΛh−1

Λ
for t ∈ [tk, tk+1]. Then, by the integral

inequality, and again, by the mean value theorem we get
bounds of the absolute values of each of the above

|(15)| ≤ h2

2
sup

t∈[tk,tk+1]
| f ′(x(t))| | f ′(z(t))| |x(t)− y(t)|

|(16)|=
∣∣∣−[ f ′(x(t))

∫ t

tk
(t− tk)(v(t)−w(t))dt

]tk+1

tk

+
∫ tk+1

tk
f ′′(x(t))ẋ(t)

∫ t

tk
(s− tk)(v(s)−w(s))dsdt

∣∣∣
≤ h3

6
sup

t∈[tk,tk+1]
| f ′′(x(t))ẋ(t)| |v(t)−w(t)|

|(17)| ≤ h2

2
sup

t∈[tk,tk+1]
| f ′′(z(t))| |x(t)− y(t)| |ẏ(t)|

If we combine the above terms, we get the local error is

(1−hL) |x(tk+1)− y(tk+1)| ≤
7

12
h3 AH (K +A)

+
7
4

h2 A
(
L2 + H (K +5A/2)

)eΛh−1
Λ

(18)

Remark 7: At each time step, we obtain high order esti-
mate on the error, but for any t ∈ (tk, tk+1) the error might be
larger. In particular, we might have to use different formula
to find its bound. However, this approach is useful because
it will prevent rapid growth of the global error which will
be of O(h2).

Remark 8: For more accurate results, error estimates in
(15) and (17) could be increased to O(h4) with no additional
assumptions on the smoothness of the function f . This can

be obtained by integrating by parts once more. However, to
obtain an error of O(h4) for the whole equation, f should
be C3, and w(·) should be quadratic.

V. ALGORITHM
In this section we present an algorithm for computation

of the solution set of (1), using the single step computation
presented earlier.

Algorithm 9: Let Sk = {hk(s)±ek | s ∈ [−1,+1]pk} be an
over-approximation of the set S(x0, tk). To compute an over-
approximation Sk+1 of S(x0, tk+1):

1) Compute the flow φ̃k(xk,ak) of

ẋ(t) = f (x(t)) + ∑
m
i=1gi(x(t))w(ak,i, t)

for t ∈ [tk, tk+1], xk = x(tk) ∈ Sk, and ak ∈ A.
2) Add the uniform error bound ε (inequality (8)).
3) Compute the set Sk+1 which approximates S(x0, tk+1).
4) Reduce the number of parameters (if necessary).
5) Split the new obtained domain (if necessary).
Step (1) of the algorithm produces an approximated flow

in the form φ̃k(xk,ak)≈ φ(xk,w(ak, ·)). which is guaranteed
to be valid for all xk ∈ Sk. In practice, we cannot represent
φ̃ exactly, and instead use a polynomial approximation with
guaranteed error bound φ̂ . Such an approximation is known
as a Taylor model. The calculus of Taylor models was first
developed by Berz and Makino; see [12] and references
therein.

In step (2), we compute the uniform error bound εk
to make sure an over-approximation is achieved. In step
(3), we compute a new approximating set by applying the
approximated flow to the initial set of points to obtain a
solution set Sk+1. Steps (4) and (5) are crucial for the
efficiency of the algorithm. It is important to notice that the
number of parameters is growing over the time steps. At
each time-step, we need an extra 2m parameters to represent
the effect of the input. This will have a huge impact on the
performance of the algorithm.

The easiest way to reduce the number of parameters is to
replace the parameter dependency by a uniform error, but
this can have a negative impact on accuracy. Another way
to reduce number of parameters is using orthogonalization,
though this is only possible for affine approximations using
currently known methods. If the approximating set becomes
too large, it may be hard to compute good approximations
to the flow and/or the error. In this case, we can split the set
into smaller pieces, and evolve each piece separately. This
can improve the error, but is of exponential complexity in
the state-space dimension.

VI. NUMERICAL RESULTS
A. Perturbed Van Der Pol Oscillator

We consider the perturbed Van der Pol oscillator given by

ẋ = y

ẏ =−x+2(1− x2)y+ v,

where v represents bounded noise. In terms of our general
set up (Section II-B), we have gi = 1, for i = 1,2. Therefore,
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Fig. 1. Evolution of the Perturbed Van Der Pol Oscillator on the state space
X = [−1,3]× [−1,3], with initial points X0 = [0.1,0.105]× [1.5,1.505], noise
v(·) ∈ [−0.08,0.08], and time step h = 0.001.

suitable formula for computation of the local error for the
perturbed Van der Pol oscillator is given by inequality (18),
where the absolute value denotes the vector norm in R2. We
take the sup-norm for matrix and vector norms. If we take
D = [0,2]× [−1,3] to be the region of computation, then we
get K = 20, L = 31, Λ = 27, and H = 12. In addition, if we
assume that v(·) ∈ [−0.08,0.08], we get

ε = ||x(tk+1)− y(tk+1)|| ≤ 11.24h3 +168.17h2 e27h−1
27

We use the algorithm described in Section V to compute the
solution set of the perturbed Van der Pol oscillator for the
set of initial points X0 = [0.1,0.105]× [1.5,1.505] over the
time interval [0,3]. Because the bounds K, L, Λ, and H are
rather large, we use fairly small step size, h = 0.001, yielding
a single-step error of ε = 1.817092608∗10−7. In Fig. 1, we
show the results of the computation of the solution set of
the perturbed Van der Pol oscillator using the above values.
Splitting of the domain (in half) was performed at t1 = 1.2,
and t2 = 2.4.

Fig. 1 shows that our method can be used for rigorous
over-approximation of the solution set of a differential in-
clusion.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

An algorithm for computation of rigorous over-
approximations to the set of reachable points of input-affine
system with noisy input was presented. The construction
gave third-order error estimates at each time step, which
is an improvement over the first-order errors previously
available in the literature. We presented computation of
the error in one-dimensional case and gave a formula for
computation in higher-dimensions. In addition, we included
a computation of the solution set for the perturbed harmonic

oscillator in order to show that efficient and good numerical
solutions can be obtained via proposed algorithm.

B. Future Work

It is in our interest to further investigate which method
”simple equations“ or ”full approximation,“ is better to use
in terms of computational efficiency. The algorithm has to
be implemented and further tested using the Taylor model
functionality available in Ariadne. In addition, reduction
of parameters of the algorithm has to be investigated for
efficiency purposes. Extensions to even higher order should
be possible. Further, we will look for possible extensions of
the algorithm to more general differential inclusions, such as
those which are nonlinear in the input.
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