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ABSTRACT
Hybrid Systems are systems having a mixed discrete and continu-
ous behaviour that cannot be characterized faithfully using either
only discrete or only continuous models. A good framework for
hybrid systems should support their compositional description and
analysis, since commonly systems are specified by a composition of
smaller subsystems, to cope with the complexity of their monolithic
representation. Moreover, since the reachability problem for hybrid
systems is undecidable, one should investigate the conditions that
guarantee approximate computability of composition, when only
approximations to the exact problem data are available.

In this paper, we propose an automata-based formalism (HIOA)
for hybrid systems that is compositional and for which the evolu-
tion can be computed approximately. The main results are that the
composition of compatible HIOA yields a pre-HIOA; a dominance
result on the composition of HIOA by which we can replace any
component in a composition by another one that exhibits the same
external behaviour without affecting the behaviour of the composi-
tion; finally, the key result that the composition of two compatible
upper(lower)-semicontinuous HIOA is a computable upper(lower)-
semicontinuous pre-HIOA, which entails that the evolution of the
composition is upper(lower)-semicomputable. A discussion on how
compositionality/computability are handled in state-of-art libraries
for reachability analysis closes the paper.
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1 INTRODUCTION
Hybrid Systems are systems having a mixed discrete and continu-
ous behavior that cannot be characterized faithfully using either
discrete or continuous models only. Such systems typically consist
of a discrete control part that operates in a continuous environ-
ment, and are used in many application domains, like automotive,
robotics, avionics, autonomous vehicles, process control, real-time
and mobile computing systems [30].

Since they are usually made of different components, like con-
trollers, sensors, actuators, computer software, communication de-
vices, etc., interacting in a complex environment, they can be very
difficult to describe in a faithful way. This problem motivates the
need for rigorous mathematical models and algorithms to describe
and analyze hybrid systems.

A good framework for hybrid systems should support the com-
positional description and analysis of systems, since they can be too
complex to be understood all at once and must be decomposed. A
key of this decomposition is that the framework includes a notion
of external behavior of a component, describing the continuous and
discrete interactions with the environment, and that of composi-
tion and abstraction of different components. Composition defines
how components are put together to make complex systems out
of simpler ones. Abstractions are used both to view the system
with different levels of detail, starting from a high-level abstrac-
tion of the system with only some relevant properties down to a
low-level description with all the implementation details, and to
show which properties of the system are preserved between the
different levels. The most relevant compositional frameworks and
languages for hybrid systems proposed in the literature are Hybrid
Reactive Modules [3], Hybrid I/O Automata [28], and the languages
Charon [2], Masaccio [23], HyDI [10], HRELTL [11], the Metropolis
Metamodel Interchange Format [31], and the Compositional Inter-
change Format [1, 37]. Heterogeneous modeling frameworks like
Ptolemy [36] are also relevant, since they support hybrid systems
by combining continuous-time models with discrete logic. Compo-
sitional frameworks are useful not only to build complex systems
from a network of simple components, but also to simplify the
treatment of monolithic systems [8]. A recent example is [7], where
abstraction and compositionality are exploited to approximate the
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dynamics of nonlinear hybrid systems with linear relations that can
be handled by tools for the verification of discrete-time systems.

However, while all these formalisms address the system decom-
position issue, and solve it with different approaches, they pose
little attention to the problem of the algorithmic analysis of hybrid
systems. It is well known that the reachability relation for hybrid
systems is undecidable, except for the class of timed automata and
some generalizations [24]. Since several questions about the behav-
ior of a hybrid system can be rephrased in terms of reachable sets
and reachability relations, many papers propose approximation
techniques to estimate the reachable set [4, 6, 17, 22, 26, 34]. Unfor-
tunately, even the computation of approximations to the reachable
set is not straightforward; indeed, it may not even be possible to
compute a sequence of over-approximations convergent to the
reachable set [12].

Other approaches introduce a notion of robustness in the inter-
pretation of the verification problem, that can capture the distance ε
from unsatisfiability of a given property [19, 20]. Robustness allows
one to solve the problem of testing temporal logic formulas for
continuous-time systems [20] and piecewise linear systems [19]
using standard discrete-time analysis. However, it is known that
it is not sufficient to recover decidability for arbitrary hybrid sys-
tems [25]. The works in [19, 20] share three main differences with
the approach described in this paper. First, they focus on verifica-
tion problems for temporal logic formulas, while we are interested
in computing the evolution of a hybrid system. Second, they are
not compositional: the system under verification is assumed to be
monolithic, while we allow the composition of smaller components
into a larger system. Finally, and most importantly, they do not ex-
plicitly discuss computation, but give sufficient conditions to reduce
the continuous or hybrid system under verification into a discrete-
time system, whereas our approach gives conditions under which
the evolution of a system can be computationally approximated
with an arbitrary small and known accuracy. A technical differ-
ence between our approach and [20] is that they require uniform
closeness of trajectories over an infinite time domain, whereas our
convergence notion is uniform on compact subdomains only; global
uniform accuracy is sensitive to arbitrarily small perturbations and
cannot be computed.

This leads to some fundamental questions that guide the focus
of our paper. How can we compose systems into larger objects that
are amenable to algorithmic analysis? What restrictions can we
impose on components to ensure that their composition can be
analyzed? What are some minimal requirements to ensure compo-
sitionality of the ability to analyze a system? In this paper, we base
our computability results on the theory of computable analysis [38]
by Weihrauch and co-workers, and extend the results of [13, 16],
which describe how to solve approximately the reachability prob-
lem for systems specified as single monolithic hybrid automata.
We focus on the problem of computing the set of behaviors of a
hybrid system, and choose to use the model of Hybrid I/O Automata
[28] (HIOAs) because it can be used as a semantic framework for
several existing formalisms and is equipped already with a theory
for compositional analysis; we restrict the non-discrete dynam-
ics of HIOAs to be continuous solutions of differential equations,
thus enabling the use of the theory of computable functions of
[13, 16, 38], and then define appropriate topologies on the set of

hybrid traces of a HIOA to lead to the notions of upper and lower
semicontinuous automata, for which the set of hybrid traces are
upper and lower semicomputable, respectively. As a consequence
we have a formalism for non-linear hybrid systems over which
the reachability problem is upper or lower approximable. We then
show that upper and lower semicontinuity is preserved by parallel
composition (Theorem 5.10). Thus, for instance, if we work with
dynamics expressed in terms of differential equations based on
locally Lipschitz functions with linear growth, we can safely build
complex automata that are amenable to compositional analysis and
that are upper or lower semicontinuous, thus supporting upper
or lower approximations for problems like reachability analysis.
Along the way we show how to build the best upper or lower semi-
continuous approximation of a HIOA with dynamics expressed by
locally Lipschitz functions with linear growth.

In summary we tackle the problem of building composition-
ally large computable hybrid systems by combining two existing
theories: the theory of computable functions of Weihrauch and
co-workers, which is used already within tools like Ariadne, and
the theory of Hybrid I/O Automata, which is used already success-
fully and shows how to build complex hybrid systems amenable
to compositional analysis once the underlying continuous dynam-
ics satisfy appropriate restrictions. We focus on minimizing the
modifications to both of the existing theories so that the enhance-
ments due to compositional computability do not hinder any of
their features. Therefore, the HIOA automata model of this paper
is exactly the original HIOA automata model, with the very same
definition of parallel composition, where we impose that contin-
uous dynamics are described by means of differential equations.
This allows us to impose restrictions in the style of the theory of
computable analysis and verify that they satisfy the appropriate
conditions. We also use stuttering actions, that appear in some vari-
ants of HIOAs, to identify the points where continuous dynamics
change due to external discrete transitions. This is important to
enable computability. Notice that in this paper we focus mainly
on the theoretical aspects of the problem. Future work includes
the demonstration of this proposed framework within the library
Ariadne; yet, our general approach is meant to be independent of
the actual underlying models, and thus we aim to see it applied to
other frameworks as well.

The rest of the paper is organized as follows. Section 2 gives some
preliminary notions and notations. Section 3 introduces the formal-
ism of HIOAs, with dynamic behavior constrained to be described
by differential equations, and its compositional results. Section 4
gives a brief descriptions of the known results from computability
analysis that are needed in this paper. Section 5 presents our com-
putability results for HIOAs. Section 6 describes the progress in the
implementation of the results of this paper within the tool Ariadne
and compares the resulting framework with other existing tools.
Section 7 contains some concluding remarks.

2 PRELIMINARY NOTIONS
Throughout the paper we fix the time axis to be the set of non-
negative real numbers R+. An interval I is any convex subset of R+,
denoted as usual with [t1, t2], (t1, t2), [t1, t2), and (t1, t2], where a
parenthesis corresponds to an open endpoint and a square bracket
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to a closed endpoint. For any interval I and t ∈ R+, we define I + t
as the interval {t ′ + t : t ′ ∈ I }.

We also fix a countable universal setV of variables, where every
variable v ∈ V has a type Type(v ) which defines the domain
over which the variable ranges. Elementary types include booleans,
integers and reals. A type is discrete if it has a decidable equality.
Given a set of variables V ⊆ V , a valuation over V is a function
that associates every variable inV with a value in its type. We often
refer to valuations as states, and we denote them as x, y, z, . . .. The
set Val(X ) is the set of all valuations over X . Given a valuation x
and a subset of variables Y ⊆ X , we denote the restriction of x to
Y as x|Y . The restriction operator is extended to sets of valuations
in the usual way. Symmetrically, given a set of valuations S and a
superset of variables Z ⊇ X , the extension of S to Z is denoted as
S ↑ Z and defined as the set {z ∈ Val(Z ) : z|X ∈ S }.

A notion that plays an important role in the paper is the one of
continuous trajectory. A continuous trajectory over a set of variables
X is a continuous function τ : I 7→ Val(X ), where I is a left-closed
interval with left endpoint equal to 0. In the following we call
a continuous trajectory over X simply an “X -trajectory”. With
dom(τ ) we denote the domain of τ , while with lasttime(τ ) (the
limit time of τ ) we define the supremum of dom(τ ). The first state
of a trajectory is firststate(τ ) = τ (0), while, when dom(τ ) is right-
closed, the last state of a trajectory is defined as laststate(τ ) =
τ (lasttime(τ )). We denote with Trajs(X ) the set of all trajectories
over X . Given a subset Y ⊆ X , the restriction of τ to Y is denoted
as τ |Y and it is defined as the trajectory τ ′ : dom(τ ) 7→ Val(Y )
such that τ ′(t ) = τ (t ) |Y for every t ∈ dom(τ ). With a little abuse
of notation, if I = [t , t ′] is a subinterval of dom(τ ), we denote with
τ |I the trajectory τ ′ such that dom(τ ′) = [0, t ′ − t] and τ ′(t ′′) =
τ (t ′′ + t ) for every t ′′ ∈ dom(τ ′). The restriction operators are
extended to sets of trajectories in the usual way.

A trajectory τ ′ is a prefix of another trajectory τ if and only if
lasttime(τ ′) ⩽ lasttime(τ ) and τ ′(t ) = τ (t ) for every t ∈ dom(τ ′).
Conversely, we say that τ ′ is a suffix of τ if there exists t ∈ R+
such that lasttime(τ ′) = lasttime(τ ) − t and τ ′(t ′) = τ (t ′ + t ) for
every t ′ ∈ dom(τ ′). Given two trajectories τ1 and τ2 such that
laststate(τ1) = firststate(τ2), their concatenation τ1 · τ2 is the tra-
jectory with domain dom(τ1) ∪ (dom(τ2) + lasttime(τ1)) such that
τ1 · τ2 (t ) = τ1 (t ) if t ∈ dom(τ1), τ1 · τ2 (t ) = τ2 (t − lasttime(τ1)) oth-
erwise. We sometimes omit the · operator and write τ1τ2 to denote
the concatenation τ1 · τ2. Concatenation is extended to countable
sequences of trajectories in the usual way.

3 A COMPOSITIONAL FORMALISM
The starting point of the discussion is the formalism of Hybrid
I/O Automata (HIOAs) defined by Lynch, Segala, and Vandraager
in [28, 29] and the definition of Hybrid System given in [14]. The
key point of this section is to show how to revise the definition of
HIOAs from [28] without losing the power of the model and yet
enable computability of the reachable set as in [14].

More specifically, our definition of Hybrid Automata is based
on the early definition in [29], which features the notion of envi-
ronment action (representing the occurrence of an unobservable
discrete transition outside the system, or a discontinuity in the
input), later removed from [28] to simplify the formalism. However,

the explicit presence of an environment action is needed to achieve
computability of the formalism (as we will show in Section 5), and
thus we choose to reintroduce it, at the price of adding some more
axioms to deal with it. Comparing with [28], where transitions and
trajectories are defined explicitly as sets, here we define continuous
trajectories and discrete transitions implicitly in an operational way,
where the former are solutions of differential equations and the
latter are defined implicitly in term of guards and reset functions
(so we do not need some related axioms needed in [28]); moreover,
we do not introduce explicitly initial states (same as all states are
initial) and define an invariant set. Notice that in our definition, as
in [29], transitions affect internal and external variables, whereas
in [28] they affect only internal variables.

Definition 3.1. A Hybrid Input/Output Automaton (HIOA) is a
tuple A = ⟨U ,X ,Y , I ,H ,O, Inv,Act, Res,Dyn⟩, where:
• U , X , and Y are three finite sets of input, internal, and output
variables, disjoint from each other. Variables in Z = X ∪Y are
called locally controlled, while variables inW = U ∪ Y are
called external. We define V = U ∪ X ∪ Y ;
• I , H , O are three finite sets of input, internal, and output
actions, disjoint from each other. We assume that I contains
a special action ε , which represents the environment action.
Actions in L = H ∪ O are called locally controlled, while
actions in E = I∪O are called external. We defineA = I∪H∪O ;
• Act ⊆ A × Val(V ) is the activation set. We say that an action
a ∈ A is enabled in v ∈ Val(V ) if (a, v) ∈ Act. Act respects
the following property:
A1 input action enabling: for every a ∈ I and every v ∈

Val(V ), (a, v) ∈ Act;
• Inv ⊆ Val(Z ) is the invariant set;
• Res : A × Val(U ) × Val(Z ) ⇒ Val(Z ) defines a reset map1
respecting the following property:
R1 environment action does not change state: for every u ∈

Val(U ) and z ∈ Val(Z ), Res(ε, u, z) = {z};
R2 internal actions do not change outputs: for every h ∈ H ,

u ∈ Val(U ), z ∈ Val(Z ), and z′ ∈ Res(h, u, z), z|Y = z′ |Y ;
• Dyn : Val(U ) × Val(Z ) → Val(Z ) is a differential equation
giving a continuous dynamics of the form ż = Dyn(u, z). We
require Dyn to respect the following property:
T1 input trajectory enabling: for every z ∈ Inv and every

ν ∈ Trajs(U ), there exists τ ∈ Trajs(V ) such that τ |U = ν ,
firststate(τ |Z ) = z; for every t ∈ dom(τ ), τ (t ) |Z ∈ Inv
and τ̇ |Z (t ) = Dyn(τ (t )); and either (i) dom(τ ) = dom(ν ),
or (ii) dom(τ ) is closed, lasttime(τ ) ⩽ lasttime(ν ) and
some l ∈ L is enabled in laststate(τ ).2

The fact that the invariant includes only locally controlled vari-
ables guarantees that a HIOA cannot constrain the value of the
input variables by restricting the set of admissible states. Condition
A1 is the usual input enabling property of I/O automata. Condition
R1 asserts that the environment action ε cannot change the value
of locally controlled variables, while condition R2 asserts that the
internal actions affect only internal variables and cannot change
1In this paper we use the notation f : A ⇒ B to denote multivalued functions, that
is, functions f from A to the powerset of B .
2Note that formally, by τ̇ |Z (t ) we mean d

dt [τ |Z ](t ) and not dτ
dt |Z (t ), since ν =

τ |U need not be differentiable.
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A1 A2ẏ = 0 ẋ = 0
x y, e1

e1 : x ⩽ 1→ y := y + 2

ε : T rue → y := y

y, e1 x

e1 : T rue → x := x + 2

ε : T rue → x := x

Figure 1: Two HIOAs.

the value of output variables. Condition T1 establishes an input
enabling condition on trajectories: for every input trajectory, either
the automaton can follow it completely, or it must react with some
locally controlled event. Violations of T1 could potentially arise due
to solutions of the differential equation leaving Inv, or becoming
unbounded in finite time. The activation set Act and the reset map
Res define the set of discrete transitions of the HIOA, namely, the
set of triples v

a
−→ v′ such that v, v′ ∈ Val(V ), a ∈ A, (a, v) ∈ Act

and v′ |Z ∈ Res(a, v).
In the following we will sometime refer to an automaton that

respects all properties of HIOA but condition T1: we call such an
automaton pre-HIOA.

Example 3.2. Figure 1 shows two HIOAs A1 and A2. A1 has
input variable x and output variable y with dynamics ẏ = 0. The
dynamics of x is not specified since it is an input. Axiom T1 is trivially
respected.A1 has a single output action e1 with guard x ⩽ 1 and reset
Res1 (e1,y) = {y + 2}. A2 has input variable y and output variable x
with dynamics ẋ = 0. The action e1 is an input action for A2: hence
the corresponding discrete transition has guard True (to respect the
input enabling axiomA1), and reset Res2 (e1,x ) = {x+2}. Transitions
labeled with the environment action ε are always active and do not
change the value of the output variables. Notice that every HIOA
defines the dynamics of its output variables and actions, while inputs
dynamics are left unspecified. Similarly, an HIOA can constrain the
activation of output actions but not of input actions.

Given a set of actions A and a set of variables V , a hybrid trajec-
tory over (A,V ) (also called (A,V )-trajectory) is a possibly infinite
sequence α = τ0a1τ1a2τ2 . . . such that

(1) τi is a (continuous) trajectory over V , for every i ⩾ 0,
(2) ai is an action in A ∪ {ε }, for every i ⩾ 0,
(3) if α is finite then it ends with a trajectory, and
(4) if τi is not the last continuous trajectory of α , then dom(τi )

is right-closed.
We denote with HTrajs(A,V ) the set of all hybrid trajectories over
(A,V ). If ε ∈ A′ ⊆ A and V ′ ⊆ V , then the (A′,V ′)-restriction of α
is the (A′,V ′)-trajectory α ′ = τ ′0a

′
1τ
′
1a
′
2τ
′
2 . . . such that, for every

i ⩾ 0, τ ′i = τi |V
′ and a′i = ai if ai ∈ A′, a′i = ε otherwise.

We define dom(α ) =
⋃
n∈N {n} × dom(τn ), α (n, t ) = τn (t ) if

t ∈ dom(τn ), and α (t ) is the list of all τn (t ) for which t ∈ dom(τn ).
(A,V )-trajectories are used to give the semantics of a HIOA in

terms of executions and traces.

Definition 3.3. An execution of a HIOA A from a state z ∈
Val(Z ) is a (A,V )-trajectory α = τ0a0τ1a1τ2a2 . . . such that:

(1) firststate(τ0) |Z = z;

(2) every τi is a solution of Dyn, namely, a trajectory on V such
that τ̇ |Z (t ) = Dyn(τ (t )) for every t ∈ dom(τ );

(3) for every τi and t ∈ dom(τi ), τi (t ) |Z ∈ Inv;

(4) if τi is not the last trajectory in α , then laststate(τi ) |Z
ai
−−→

firststate(τi+1) |Z .
The corresponding trace, denoted trace(α ), is the restriction of α to
external variables and external actions.

By axioms A1 we have that the environment action ε is always
active, while by axiom R1 we have that ε events do not affect the
state of the automaton. Hence, we can add an arbitrary number of
ε events to the input trace of A without affecting its behavior, as
long as those ε events do not change the value of input variables.
This intuition is captured by the following definition of stuttering
equivalence between hybrid traces.

Definition 3.4. Let α and β be hybrid trajectories over (A,V ).
We say that α is stuttering equivalent to β , denoted by α ∼ε β , if
it is possible to decompose α into α0α1α2 . . ., and β into β0β1β2 . . .
such that, for every j ⩾ 0, either
(i) α j = β j , or
(ii) α j = α

j
1εα

j
2 with laststate(α j1 ) = firststate(α j2 ) and β j = α

j
1α

j
2 ,

or
(iii) β j = β

j
1εβ

j
2 with laststate(β j1) = firststate(β j2) and α

j = β
j
1β

j
2.

We define ExecsA to be the set of executions ofA, ExecsA (ν ) to
be the set of all executions with input ν , and ExecsA (ν , z0) the set
of executions with input ν and initial state z0. The following lemma
shows that the set of execution of A is closed under stuttering
equivalence.

Lemma 3.5. LetA be a HIOA, α ∈ ExecsA and β ∈ HTrajs(A,V )
such that α ∼ε β . Then β ∈ ExecsA .

Proof. Let α ∈ ExecsA and β ∈ HTrajs(A,V ) such that α ∼ε β .
Let α0α1α2 . . ., and β0β1β2 . . . be decompositions of α and β that
respect conditions (i)–(iii) of Definition 3.4.

We prove that for every j ⩾ 0, β j is an execution of A. By
Definition 3.4, three cases may arise.
(i) α j = β j : trivial since α j is an execution of A;
(ii) α j = α

j
1εα

j
2 with laststate(α j1 ) = firststate(α j2 ) and β j = α

j
1α

j
2 .

Since α
j
1 and α

j
2 are executions of A with laststate(α j1 ) =

firststate(α j2 ), then their concatenation β is an execution of
A;

(iii) β j = β
j
1εβ

j
2 with laststate(β j1) = firststate(β j2 ) and α

j = β
j
1β

j
2.

Since β
j
1 and β

j
2 are executions of A, and laststate(β j1)

ε
−→

firststate(β j2) is a valid discrete transition, then β
j
1εβ

j
2 is an

execution of A.
Since β is a countable concatenation of executions of A, it is an
execution of A. □

Traces of A are not necessarily closed under stuttering equiv-
alence. Hence, we define the set TracesA to be the closure under
stuttering equivalence of the set of traces of A: TracesA = {β ∈
HTrajs(E,W ) | ∃α ∈ ExecsA , trace(α ) ∼ε β }. Similarly define
TracesA (ν ) and TracesA (ν , z0).

Composition is defined as a partial binary operation on hybrid
automata, which corresponds to the usual parallel composition of
automata adapted to our context.
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A1∥A2
ẋ = 0
ẏ = 0

x, y, e1

e1 : x ⩽ 1→ x := x + 2;y := y + 2

ε : T rue → x := x ;y := y

Figure 2: Composition of HIOAs A1 and A2 from Exam-
ple 3.2.

Definition 3.6. Given two HIOAs A1 = (U1,X1,Y1, I1,H1,O1,
Inv1,Act1, Res1,Dyn1) and A2 = (U2,X2,Y2, I2,H2,O2, Inv2,Act2,
Res2,Dyn2), we say that they are compatible if and only if

(1) H1 ∩A2 = H2 ∩A1 = ∅, X1 ∩V2 = X2 ∩V1 = ∅ (disjointness
of internal actions and variables), and

(2) Y1 ∩ Y2 = O1 ∩ O2 = ∅ (disjointness of output actions and
variables).

We define the composition as follows.

Definition 3.7. Given two compatible HIOAs A1 = (U1,X1,Y1,
I1,H1,O1, Inv1,Act1, Res1,Dyn1) and A2 = (U2,X2,Y2, I2,H2,O2,
Inv2,Act2, Res2,Dyn2), we define their composition A1∥A2 as the
structure A = (U ,X ,Y , I ,H ,O, Inv,Act, Res,Dyn) such that:

(1) Y = Y1 ∪ Y2,U = (U1 ∪U2) \ Y , and X = X1 ∪ X2;
(2) O = O1 ∪O2, I = (I1 ∪ I2) \O , H = H1 ∪ H2;
(3) Inv = {z ∈ Val(Z ) : z|Z1 ∈ Inv1 ∧ z|Z2 ∈ Inv2};
(4) for each v ∈ Val(V ) and a ∈ A, (a, v) ∈ Act iff for every

i = 1, 2 either (i) a ∈ Ai and v|Vi ∈ Acti , or (ii) a < Ai ;
(5) for each v ∈ Val(V ), z′ ∈ Res(a, v) iff for every i = 1, 2

either (i) a ∈ Ai and z′ |Zi ∈ Resi (a, v|Vi ), or (ii) a < Ai and
z′ |Zi = v|Zi ;

(6) for every v ∈ Val(V ), we have that Dyn(v) |Z1 = Dyn1 (v|V1)
and Dyn(v) |Z2 = Dyn2 (v|V2).

Example 3.8. Consider the HIOAs A1 and A2 from Example 3.2:
they are compatible, since y is an output variable of A1 but not of
A2, x is an output ofA2 but not ofA1 and the action e1 is an output
action of A1 but not of A2. Figure 2 shows the composition A1∥A2:
it has two output variables x ,y, with dynamics ẋ = 0 and ẏ = 0, and
no inputs. The action e1 is an output action for the composition: the
activation is x ⩽ 1 and the reset is Res(e1,x ,y) = {(x + 2,y + 2)},
which corresponds to the composition of the two resets from A1 and
A2. In this particular example the composed system is closed: all the
variables have a defined dynamics, and all actions are controlled by
the system, except for the environment action ε .

In the original definition of [28], the composition of two HIOAs
is not necessarily a HIOA. Indeed, the authors of [28] show that
all properties but T1 are preserved by composition. To show that
property T1 is not preserved by composition, they give an example
of two HIOAs whose composition does not respect T1. Even though
the counter-example given in [28] does not fit in our definition of
a HIOA since the dynamics are not continuous, there are counter-
examples fitting in our definition with continuous dynamics, as
demonstrated below:

Example 3.9. Consider the HIOAA with no events, input variables
u,v and output variable y with dynamics ẏ = u2. The input variable
v does not affect the dynamics of the system. Then the continuous
trajectories satisfy T1 with y (t ) = y (0) +

∫ t
0 u (t )2dt .

Now consider identical copiesA1,2, coupled byu1 = y2 andu2 = y1
(v1 and v2 are not coupled). The composed system A1∥A2 has input
variablesv1,v2 and output variablesy1,y2. With the initial conditions
y1 (0) = y2 (0) = 1, the executions ofA1 andA2 are identical, so they
satisfy ẏ = y2 with y (0) = 1, which has solution y (t ) = 1/(1 − t ) for
t ∈ [0, 1). Hence, the composed system does not satisfy T1: since the
executions are only defined on a bounded time interval, the system
cannot follow input trajectories defined over an interval bigger than
[0, 1).

However, composition still yields a pre-HIOA:

Theorem 3.10. IfA1 andA2 are compatible HIOAs thenA1∥A2
is a pre-HIOA.

Proof. Let A = A1∥A2. We have to prove that it respects all
properties of Definition 3.1 but T1.

Disjointness of U , X , and Y follows from disjointness of U1,
X1, and Y1, from disjointness ofU2, X2, and Y2, and compatibility.
Similarly, disjointness of I , H , andO follows from disjointness of I1,
H1, and O1, from disjointness of I2, H2, and O2, and compatibility.
Nonemptiness of Inv follows from nonemptiness of Inv1 and Inv2.

Now, we verify the A1 property. Consider v ∈ Val(V ) and a ∈ I :
three cases may arise.

(1) a ∈ I1 ∩ I2. Since Ai respects A1, we have that (a, v|Vi ) ∈
Acti for i = 1, 2. By definition of composition, (a, v) ∈ Act.

(2) a ∈ I1 \ I2. Since A1 and A2 respect A1, we have that
(a, v|V1) ∈ Act1 and (ε, v|V2) ∈ Act2. Therefore, by defini-
tion of composition, (a, v) ∈ Act.

(3) a ∈ I2 \ I1. This case is symmetric to the previous one and
thus is skipped.

To conclude the proof, we have to show that R1 and R2 are
verified. Let u ∈ Val(U ), z, z′ ∈ Val(Z ) be such that z′ ∈ Res(ε, u, z),
and let v = u ∪ z. By the definition of composition, we have that
z′ |Zi ∈ Res(ε, v|Vi ), for i = 1, 2. By R1 applied to Ai we have that
Res(ε, v|Vi ) = {v|Zi } and hence that v|Zi = z′ |Zi . SinceZ = Z1∪Z2,
we can conclude that v|Z = z = z′, and thus that Res(ε, u, z) = {z}
as needed.

To prove R2, let h ∈ I , u ∈ Val(U ), z, z′ ∈ Val(Z ) be such that
z′ ∈ Res(h, u, z), and let v = u ∪ z. Since h ∈ I = I1 ∪ I2, by the
disjointness of I1 and I2 we have that eitherh ∈ I1 orh ∈ I2. Suppose
w.l.o.g. that h ∈ I1: by the definition of composition, we have that
z′ |Z1 ∈ Res(h1, v|Vi ), and that z′ |Z2 ∈ Res(ε, v|V2). By R2 applied
toA1 we have that z′ |Y1 = v|Y1. By R1 applied toA2 we have that
z′ |Z2 = v|Z2, which implies that z′ |Y2 = v|Y2. Since Y = Y1 ∪ Y2,
we can conclude that z|Y = z′ |Y , as needed. □

This definition of a HIOA is compositional in the sense that
it respects the following fundamental properties. First of all, the
following projection results establish that the traces of a composition
project down to traces of the individual components. Proofs are
omitted to save space and will be included in a forthcoming journal
paper. Similar results, with complete proofs, can also be found
in [28].
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Lemma 3.11. LetA = A1∥A2 and let α be an execution fragment
of A. Then α |(A1,V1) and α |(A2,V2) are execution fragments of A1
and A2, respectively.

Lemma 3.12. LetA = A1∥A2 and let α be an execution fragment
of A. Then trace(α ) |(Ei ,Wi ) = trace(α |(Ai ,Vi )).

The following theorem relates the set of traces of a composition
to the sets of traces of the components. It is expressed in terms of
equality between two sets of traces. Set inclusion in one direction
follows from the previous lemmas. Set inclusion in the other direc-
tion expresses the idea that traces of components can be “pasted
together” to yield a trace of the composition.

Theorem 3.13. Let A = A1∥A2. Then the set of traces of A
is exactly the set of (E,W )-trajectories whose restriction to A1 and
A2 are traces of A1 and A2, respectively. That is, TracesA = {β ∈
HTrajs(E,W ) | ∃β ′ ∼ε β such that β ′ |(Ei ,Wi ) ∈ TracesAi , i =
1, 2}

Axiom R2 is crucial to prove the opposite direction of Theo-
rem 3.13. Indeed, if we allow internal events to change output
variables, then we can have (E,W )-trajectories β that project down
to traces of A1 and A2 but are not included in TracesA .

Example 3.14. Consider the following variant of the two HIOAs
A1 and A2 from Example 3.2. The variables x and y, and their
dynamics are unchanged. The action e1 is replaced in A1 by an
internal action h1 with the same guard x ⩽ 1 and the same reset
Res1 (h1,y) = {y + 2}. In A2 the input action e1 is replaced by an
internal action h2 with guard y ⩽ 1 and reset Res2 (h2,x ) = {x + 2}.
Notice that in this case A2 can control the activation of h2 since it
is an internal action. The new HIOAs respect all conditions of the
Definition 3.1 except R2 (the internal events change the values of
outputs).

The composition A1∥A2 has output variables x ,y with dynamics
ẋ = 0 and ẏ = 0. The internal actions h1 and h2 have the same guards
and resets as above, with the additional constraint that h1 does not
change the value of x and h2 does not change the value of y.

Now, take a trace β = τ1ετ2 where τ1 is a constant trajectory with
x = 0 and y = 0 and τ2 is a constant trajectory with x = 2 and y = 2.
If you project β to A1 you obtain an execution where ε is replaced by
h1. If you project down to A2, ε is replaced by h2.

However, no execution of A1∥A2 can generate β , or any other
trace β ′ ∼ε β : when x = 0 and y = 0 both h1 and h2 are active in A.
If h1 is executed first, then x is kept at 0 while y is reset to 2 and h2 is
deactivated. Then, the only possible trajectories that can follow h1 are
constant trajectories with x = 0 and y = 2. The same if h2 is executed
first: x is reset to 2 and y kept at 0, deactivating h1. In this case the
only possible trajectories after h2 have x = 2 and y = 0.

As a direct consequence of the previous results, we can substi-
tute any of the two components of A1∥A2 with another one that
exhibits the same external behavior without affecting the behavior
of the whole composition.

Theorem 3.15. LetA1 andA2 be two hybrid automata such that
A1 ⩽ A2 (the set of traces of A1 is contained in the set of traces of
A2), and let B be a hybrid automaton compatible with both A1 and
A2. Then A1∥B ⩽ A2∥B.

4 COMPUTABLE ANALYSIS
In the theory of computable analysis, computation is performed by
Turing Machines acting on (infinite) streams of data. These data
streams encode a sequence of approximations to some quantity (such
as a region of the state space, or a function describing the system)
with guarantees on the accuracy. A given function or operator is
computable if, given data streams encoding the inputs, it is possible
to calculate a data stream encoding the output. Finite computations
can be obtained by terminating when a given accuracy criterion
is satisfied. The theory of computable analysis therefore allows
to determine whether the solution to a certain problem can be
approximated to any desired and known accuracy.

Even though the model of computation is based on ordinary
Turing Machines, the main purpose of computable analysis is to
deal with approximations. The fact that input data are interpreted to
be approximate can drastically change the computability properties
of problems, as shown by the following simple example.

Example 4.1. Consider the problem of testing whether a guard
p (x ) ⩾ 0 is true or not, where p is some polynomial with rational
coefficients. If the value of x is a rational number that is described
exactly, the exact value for p (x ) can be computed and the problem is
easily solvable. However, if the only information that we have about
x is a sequence of approximations that converges to x at a known rate,
then the problem becomes semi-decidable. From an approximation x̃
to x with error known to be at most ϵx , it is possible to compute an
approximation ỹ to y = p (x ) and an error bound ϵy . When p (x ) < 0
or p (x ) > 0 it is possible to find a sufficiently accurate x̃ that allows us
to prove that the guard is false in the former case and true in the latter
case. On the other hand, when p (x ) = 0, no matter how accurate the
current approximation x̃ is, we cannot exclude neither the possibility
that p (x ) < 0, nor that p (x ) > 0, and thus we cannot give a definite
answer to the problem.

The representations used in computable analysis to encode in-
puts and outputs are related to a particular topology on the set
of objects under consideration. Although a given space may have
many representations, most spaces, including the real numbers R
have a unique “natural” representation (up to computable equiv-
alence). We call a space with a representation a type, so e.g. the
real number type is the space of real numbers encoded by a natural
representation.

We also have natural representations for product spaces X1 ×X2
and spaces of continuous functions C (X ,Y ). The projections πi :
X1×X2 → Xi are computable, as is the evaluation C (X ,Y )×X → Y
with f ,x 7→ f (x ). Further, to compute f ∈ C (X ,Y ), it suffices to
show that one can effectively evaluate f for every argument. If X
is a locally-compact Hausdorff space, then the topology induced by
the natural representation on C (X ,Y ) is the compact-open topology,
of uniform convergence on compact sets.

A fundamental theorem is that only continuous functions and
operators can be computable with respect to a given representation
and to the corresponding topology [38]. Hence, if we can prove
that a certain function is discontinuous, then it is uncomputable.
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The converse is not generally true, but as a guiding principle, any
“naturally-defined” continuous operator is computable.3

Since the only functions from a connected space to the Booleans
are trivial, Boolean logic with values ⊤ (true) and ⊥ (false) does not
suffice. Logical predicates may also take the indeterminate value ↑,
so to yield a Kleenean resultK = {⊤,↑,⊥}. As a topological space,K
has open sets {}, {⊤}, {⊥}, {⊤,⊥}, {⊤,↑,⊥}. Unlike in discrete com-
putation, the value ↑ is not considered an error, but an indication
that the result of the predicate is highly sensitive to the arguments.
When we merely aim to test the truth of a predicate, we consider
a Sierpinskian result S = {⊤,↑}. We say a predicate p taking val-
ues in K is quasidecidable, and one taking values in S is verifiable
(semidecidable). A predicate taking values in {↑,⊥} is falsifiable.

We will also need to consider representations of sets of objects.
A natural representation of a subset S of a space X is by its mem-
bership predicate x ∈ S . This should take values in the Kleeneans
K, with x ∈ S yielding ↑ for the borderline case x ∈ ∂S . We call sets
represented in this way regular, denoted R (X ), since we can verify
x ∈ int(S ) and x < cl(S ). When we are only interested in verifying
x ∈ S , we are led to the natural representation of open sets O (X )
describing openU by a membership predicateU ∋ x taking values
in the Sierpinskians S. Similarly, closed sets A (X ) are described by
a Sierpinskian-valued non-membership predicate S = x . The open
and closed set types are both subtypes of the regular set type, i.e.
the regular set representation yields more information.

We oftenwish to consider universal and existential quantification
over sets. If p : X → S is a verifiable predicate (i.e. is true on some
open set U ), then verifying ∀x ∈ S, p (x ) is equivalent to testing
S ⊂ U . It turns out that sets S for which the predicates S ⊂ U
for open U are continuous are precisely the compact sets, yielding
a representation for K (X ). The underlying topology is the upper
Vietoris topology. Similarly, verifying ∃x ∈ S, p (x ) is equivalent
to testing whether S intersects U , denoted S )(U . Predicates S )(U
are continuous for all separable sets S (which includes all subsets
of Rn ), and since S )(U ⇐⇒ cl(S ) )(U , sets are described up to
their closure. The underlying topology is the lower Fell topology. In
the literature, the type of separable sets V (X ) is also sometimes
called the overt set type. The type of located sets L (X ) supports
both universal and existential verifiable predicates, so these sets
are both compact and separable. The underlying topology is the
Vietoris topology, which is that of convergence in the Hausdorff
metric.

We will say S is upper-semicomputable if it is computable as
a compact set, and lower-semicomputable if it is computable as
a separable set. Concretely, if S is upper-semicomputable, then
we can compute a sequence of over-approximations An (say, as a
finite union of rational boxes) that converges to S from outside i.e.
S ⊂ int(An ). Similarly, if S is lower-semicomputable, then we can
compute a sequence of approximations An converging to S “from
below” i.e. such that An ⊂ N2−n (F (x )).

Important computable operations on sets are
i. Singleton {x } is computable as a located set, and hence also
as a compact set or a separable set. i.e. x 7→ {x } is computable
X → L (X ), X → K (X ) and X →V (X ).

3An open case is the embedding of a countable product of compact sets in the product
space, though even this is known to be computable for countably-based spaces.

ii. Intersection S,R 7→ S ∩ R of a located set and a regular set is
computable as a located set i.e. L (X )×R (X ) → L (X ). Further,
intersection of a compact and a closed set is computable i.e. as
K (X ) ×A (X ) → K (X ); and intesection of a separable and an
open set is computable i.e. asV (X ) × O (X ) →V (X ).

iii. Union S1, S2 7→ S1 ∪ S2 is computable for all set types i.e.
S (X ) ×S (X ) → S (X ) for S = R,O,A,L,K ,V .

For subsets of the real line, we have the following additional opera-
tions:
iv. If T is a regular (respectively open, closed) subset of R+ con-

taining 0, then the maximum interval of T containing 0 is
computable as a regular (respectively open, closed) set.

v. If T0 = [t0, t1] and T1 = [t1, t2] are closed intervals, then t1 can
be computed from T0 and T1.

Multivalued functions X ⇒ Y can be represented as types of
functions returning sets. Given a function F : X ⇒ Y , we say that F
is upper-semicomputable if, given a point x , it is possible to compute
F (x ) as a compact set. This means F ∈ C (X ,K (Y )). Similarly, F is
lower-semicomputable if it is possible to compute F (x ) as a separable
set i.e. F ∈ C (X ,V (Y )). A multivalued function F : X ⇒ Y is
computable if and only if it is both upper and lower semicomputable
i.e. computable as a located set. Similarly, partial functions can be
considered as multivalued functions returning singleton or empty
sets; in particular, the typeCA (X ,Y ) of partial functionswith closed
domain is a subtype of compact-valued functions C (X ,K (Y )).

The forward image of located, compact and separable sets is
computable under multivalued maps i.e. F (S ) is computable in
S (Y ) for F ∈ C (X ,S (Y )) and S ∈ S (X ) for S = L,K ,V .

Note that if F is upper-semicomputable, then it is upper-semicon-
tinuous, meaning that for x close to x0, F (x ) is a subset of a small
neighborhood of F (x0). If F is lower-semicomputable, then it is
lower-semicontinuous.

Important non-computable operations (since these are not con-
tinuous) are forward-image of closed sets f ,A 7→ f (A), verifying
A ⊂ U for a closed set A in an open set U , and intersection of
separable sets.

It is worth emphasizing that a function that is uncomputable
with respect to given representations of the arguments and results
can be computable with respect to representations based on a dif-
ferent topology. This corresponds to requiring more information
on the inputs, or to requiring less information on the output of the
function.

Example 4.2. Let G be the set of points satisfying the condition
д(x ) ⩾ 0. Then G cannot, in general, be computed to arbitrary accu-
racy in the topology of the Hausdorff metric i.e. as a located set, but
it is possible to compute a sequence of concrete over-approximations
(as the complement of unions of rational boxes) which converges to
G i.e. to compute G as a closed set. A counterexample is given by
д(x ) = (x − a)2 (x − b) + e with a < b, for which G contains a
neighborhood of a for e > 0, but not for e < 0, so testing a ∈ G is
undecidable for e = 0 if e is only known to arbitrary accuracy.

5 COMPUTABILITY RESULTS
In [14, 16], it was shown how to apply the theory of computable
analysis to find algorithmic solutions to the reachability problem
for hybrid automata without inputs. In this section we will show
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how to extend these results to compute execution sets for hybrid
input-output automata.

The use of an appropriate topology/representation is crucial
when considering computability for hybrid automata, where dis-
crete transitions can cause discontinuities in both space and
time [14]. A natural description of the executions of a hybrid au-
tomaton is as a set of hybrid trajectories over (A,V ). To obtain a rep-
resentation of the space of (A,V )-hybrid trajectories α = τ0a0τ1 · · · ,
we need to consider the continuous trajectories, which are par-
tial functions τ : R+ → Val(V ) defined on closed intervals i.e.
τ ∈ CA (R+,Val(V )). In the corresponding topology, hybrid tra-
jectories αk converge to α∞ with N∞ ∈ N ∪ {∞} if (i) the time
intervals dom(τk,i ) = [0, tk,i ] satisfy tk,i → t∞,i if i < N∞, and
tk,N∞+1 → ∞ if N∞ < ∞; (ii) for each i < N∞, the events ak,i
equal a∞,i for sufficiently large i , (iii) the τk,i converge uniformly
to τ∞,i for i < N∞, and (iv) if N∞ < ∞, τk,N∞ converge uniformly
to τ∞,N∞ on every compact subset [0, t] of [0,∞).

Even for the simple class of deterministic hybrid systems without
inputs, the solution trajectory has unavoidable discontinuities with
respect to the initial conditions, so by the fundamental theorem of
computable analysis it is uncomputable.

Theorem 5.1 ([14, Theorem 4.6]). For any coherent semantics
of evolution4, the finite-time evolution of a hybrid system is uncom-
putable.

The above theorem proves that it is impossible to regularize
the evolution near the discontinuity points to make the solution
computable. However, it does not in itself rule out the possibility
of regularizing the evolution in some way so that the evolution
becomes at least semi-computable.

One possible approach is to compute sets of trajectories. We
cannot compute the executions as a compact set, since the set of
allowable input (I ,U )-trajectories is not compact. We could try to
compute sets of trajectories as a closed set. While this is possible
for a large class of systems, the resulting information is too weak
to be used to prove safety properties, since testing inclusion of a
closed set in an open set is undecidable.

Instead, we represent the executions by an input-to-state map-
ping taking (I ,U )-trajectories to sets of (A,V )-trajectories. The-
orem 5.1 implies that the set of (A,V )-trajectories is not in gen-
eral computable as a located set. However, for appropriate system
classes, we will be able to compute the set as either a compact set,
or as a separable set, yielding two kinds of semicomputability.

Before defining our system classes, we first consider computabil-
ity of solutions of the differential equation describing the continu-
ous dynamics.

Definition 5.2. The differential equation ż = Dyn(u, z) has
unique, entire solutions if for all continuous input functions u :
R+ → Val(U ) and initial conditions z0 ∈ Val(Z ), there exists a
unique differentiable function z : R+ → Val(Z ) such that z(0) = z0
and for all t ∈ R+, ż(t ) = Dyn(u(t ), z(t )).

4The formal definition of coherent semantics is given in [14]. Here it is sufficient to
say that this condition eliminates all trivial approximations, like the one that takes the
entire state space.

Well-known sufficient conditions for a differential equation to have
unique, entire solutions are that it is locally-Lipschitz with linear
growth.

Definition 5.3.
a) The differential equation ż = Dyn(u, z) has linear growth if there

exists a constant C such that ∥ż∥ ⩽ C (∥u∥ + ∥z∥ + 1), and linear
growth in state if ∥ż∥ ⩽ C (∥z∥ + 1)

b) The differential equation ż = Dyn(u, z) is locally-Lipschitz if
for every constant B there exists a constant L such that for all
u ∈ Val(U ), z1, z2 ∈ Val(Z ) with ∥u∥, ∥z1∥, ∥z2∥ ⩽ B, we have



Dyn(u, z1) − Dyn(u, z2)




 ⩽ L∥z1 − z2∥.

The conditions in Definition 5.3 are standard in the literature. The
locally-Lipschitz condition is sufficient for solutions to be unique,
and linear growth is sufficient for solutions to be entire.

Definition 5.4. LetA = ⟨U ,X ,Y , I ,H ,O, Inv,Act, Res, Dyn⟩ be
a HIOA.
a) A is said to be upper-semicontinuous if Inv and Act are closed,

Res is an upper-semicontinuous compact-valued function, and Dyn
has unique entire solutions.

b) A is said to be lower-semicontinuous if Inv is open, Res is a lower-
semicontinuous separable-valued function, and Dyn has unique
entire solutions.

For such systems, the evolution is semicomputable:

Theorem 5.5. Let A be a HIOA.
a) If A is upper-semicontinuous, then the set of executions for a

given input trace and initial condition is upper-semicomputable
i.e. computable as a compact set.

b) If A is lower-semicontinuous, then the set of executions for a
given input trace and initial condition is lower-semicomputable
i.e. computable as a separable set.

To prove the theorem we use the following lemmas.

Lemma 5.6. Let Dyn have unique, entire solutions, in particular,
when Dyn is locally-Lipschitz with linear growth Then the continuous
trajectory z satisfying Dyn is computable given the continuous input
trajectory u and the initial state z0.

Proof. By a theorem of Ruohonen [32], the solution of a differ-
ential equation with unique solutions is computable. □

Lemma 5.7.
a) Let Res be a compact-valued upper-semicontinuous map and Act

a closed set. Then the operator Res |Act is upper-semicomputable.
b) Let Res be a separable-valued lower-semicontinuous map and Act

an open set. Then the map Res |Act is lower-semicomputable.

Proof.
a) For any x ∈ Val(V ), Res |Act (x ) = Res({x } ∩ Act). Given x , {x }

is computable as a compact set. {x } ∩ Act is the intersection of
a compact and a closed set, so it is computable as a compact
set. Finally, Res({x } ∩Act) is the image of a compact set under a
compact-valued function that is upper-semicomputable, so it is
computable as a compact set.

b) For any x ∈ Val(V ), {x } is computable as a separable set, {x } ∩
Act is the intersection of a separable and an open set, so it is
computable as a separable set. Then Res({x }∩Act) is the image of
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a separable set under a separable-valued lower-semicomputable
function, so it is computable as a separable set. □

Proof of Theorem 5.5.
a) Given the input hybrid trajectory ν , we solve the differential

equation ż = Dyn(u0, z0) up to the first event time ν to find the
trajectory τ , by Lemma 5.6. We then compute the set of times
for which τ (t ) ∈ Inv as a closed set, and the maximum interval
D containing 0 for which τ (D) ⊂ Inv. We further consider the
set of prefixes τ ′ of τ with lasttime(τ ′) ∈ D. For each such
trajectory τ ′ and each action a, we apply ResAct (a, laststate(τ ′))
by Lemma 5.7 to obtain an initial state for the next trajectory.

b) Similarly to a), one can iteratively build a lower-approximation
to the set of trajectories solving the system. □

General hybrid automata of the form given by Definition 3.1
are not necessarily upper or lower semicontinuous. In order to
compute upper or lower approximations to the solution, we need to
convert the automaton into either upper or lower semicontinuous
form. We can do this by forcing dynamics and reset functions to
be continuous and by regularizing invariants and guard sets to be
open or closed.

Definition 5.8. LetA = ⟨U ,X ,Y , I ,H ,O, Inv,Act, Res, Dyn⟩ be
a (pre-) HIOA such that Res is a continuous multivalued function with
compact separable values, and Dyn has unique, entire solutions. Then
a) α is an execution ofA using upper-semantics if α is an execution

of the upper-semicontinuous automaton A = ⟨U ,X ,Y , I ,H ,O,
cl(Inv), cl(Act), Res,Dyn⟩.

b) α is an execution ofA using lower-semantics if α is in the closure
of the set of executions of the lower-semicontinuous automaton
A = ⟨U ,X ,Y , I ,H ,O, int(Inv), int(Act), Res,Dyn⟩.

The following result is a direct consequence of Theorem 5.5.

Corollary 5.9. Let A = ⟨U ,X ,Y , I ,H ,O, Inv,Act, Res,Dyn⟩ be
a HIOA such that Res is a continuous multivalued function with com-
pact separable values, and Dyn has unique, entire solutions. Then the
evolution of A using upper semantics is upper-semicomputable and
the evolution of A using lower semantics is lower-semicomputable.

Moreover, it turns out that A is the “smallest” hybrid automaton
for which the evolution is upper-semicomputable and thatA is the
“greatest” hybrid automaton for which the evolution is lower-semi-
computable. This means that, in general, the approximations given
by the upper and by the lower semantics are the “best” approxi-
mations for computing the evolution of hybrid automata, unless
additional information is provided.

Theorem 5.10 (Main theorem). Let A1 and A2 be two com-
patible upper-semicontinuous (resp., lower-semicontinuous) HIOAs.
Suppose Dyn1 and Dyn2 are locally-Lipschitz functions with lin-
ear growth. Then the parallel composition A1∥A2 is an upper-
semicontinuous (resp., lower-semicontinuous) pre-HIOA that can be
effectively computed.

Proof. Let A1 and A2 be two compatible upper-semicontinu-
ous HIOAs, and let A denote A1∥A2. By Theorem 3.10, A is a
pre-HIOA. We have to prove that A is upper-semicontinuous and
that it can be effectively computed.

Since the set of variables and of actions of a HIOA are finite,U ,
X , Y , I , H , O are trivially computable from U1, X1, Y1, U2, X2, Y2,
and from I1, H1, O1, I2, H2, O2, respectively.

By definition of composition, we have that Inv = (Inv1 ↑ Z ) ∩
(Inv2 ↑ Z ). Since Inv1 and Inv2 are closed, projection is a contin-
uous computable function, and the intersection of closed sets is a
computable closed set, Inv is closed and computable from Inv1
and Inv2. Similarly, by definition of composition we have that
Act = Act1 ↑ (A,Z ) ∩ Act2 ↑ (A,Z ). Again, since Act1 and Act2
are closed, projection is a continuous computable function, and the
intersection of closed sets is closed and computable, Act is closed
and can be computed from Act1 and Act2.

To prove that Res is an upper-semicomputable function, it is
sufficient to observe that (i) when a ∈ A1 ∩ A2 then Res(a, z) =
Res1 (a, z|Z1) ↑ Z ∩ Res2 (a, z|V2) ↑ Z , (ii) when a ∈ A1 \ A2
then Res(a, z) = Res1 (a, z|Z1) ↑ Z ∩ Res2 (ε, z|Z2) ↑ Z , and, fi-
nally (iii) when a ∈ A2 \ A1 then Res(a, z) = Res1 (ε, z|Z1, ) ↑
Z ∩ Res2 (a, z|Z2) ↑ Z . Upper-semicontinuity of Res follows from
upper-semicontinuity of Res1 and Res2. Computability of Res as a
compact-valued function follows from the computability of projec-
tion and intersection of compact sets.

Finally, consider the dynamics Dyn : Val(U ) × Inv 7→ Val(Z ).
SinceA1 andA2 are compatible, we have that the set Z1 of locally-
controlled variables of A1 is disjoint from the set Z2 of locally-
controlled variables of A2, and that Z = Z1 ∪ Z2. Hence, we
have that Dyn(v) = (Dyn1 (v|V1), Dyn2 (v|V2)). Since projection
and cartesian product are computable, Dyn is computable from
Dyn1 and Dyn2. Further, we see that Dyn is locally-Lipschitz with
linear growth, so has computable solutions.

When A1 and A2 are two compatible lower-semicontinuous
HIOAs, lower-semicontinuity and computability ofA can be proved
in a similar way. □

From Theorem 5.10 we can conclude that the evolution of
the composition of two upper-semicontinuous (resp., lower-
semicontinuous) HIOAs is upper-semicomputable (resp., lower-
semicomputable).

Theorem 5.11. Let A1 and A2 be two compatible HIOAs, and
suppose that the continuous dynamics Dyn1 and Dyn2 are locally-
Lipschitz functions with linear growth.
a) If A1 and A2 are upper-semicontinuous, then the evolution of
A1∥A2 is upper-semicomputable.

b) If A1 and A2 are lower-semicontinuous, then the evolution of
A1∥A2 is lower-semicomputable.

Proof. Direct consequence of Theorems 5.5 and 5.10. □

The requirement that the dynamics have linear growth and are
locally-Lipschitz in Theorem 5.10 cannot be dropped, as the follow-
ing examples show:

Example 5.12. Suppose A1 has continuous dynamics ẋ1 = x1x2,
and A2 has continuous dynamics ẋ2 = x1x2, and that x1 (0) =
x2 (0) = 1. Then if x2 is a continuous entire function R+ → R, then so
is x1, since x1 (t ) = exp

(∫ t
0 x2 (τ )dτ

)
. However, clearly the composed

system has x1 (t ) = x2 (t ) = x (t ) where ẋ = x2 and x (0) = 1, which
has solution x (t ) = 1/(1 − t ) which is only defined for t ∈ [0, 1).
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Define s : R → R by s (x ) =
√
x if x ⩾ 0 and s (x ) = −

√
−x if

x ⩽ 0. Suppose ẋ1 = s (x1)−s (x1−x2) and ẋ2 = s (x2)−s (x2−x1). If
x2 is a continuous entire function R+ → R, then it can be shown that
so is x1. However, if x1 (0) = x2 (0) = 0, then the composed system
has x1 (t ) = x2 (t ) = x (t ) where ẋ = s (x ) and x (0) = 1, which has
multiple solutions e.g. x (t ) = 0 and x (t ) = t2/4.

6 COMPOSITIONAL IMPLEMENTATIONS
The computational advantage of a compositional approach is the
ability to decompose a system into open subsystems with lower
complexity, and analyze those subsystems separately. The number
of variables involved is reduced since the inputs of a given sub-
system come exclusively from the external variables of other sub-
systems. In addition, using approaches such as assume-guarantee
reasoning (see [5]) we can abstract the behavior of such inputs,
in particular by modeling input traces using (hybrid) differential
inclusions. Regarding the advantage in scalability by using decom-
position and time-varying inputs, see also the work of [9] applied
to the tool Flow*; while the paper deals with continuous spaces
only, the methodology can be easily extended to the hybrid domain.

In particular, the framework described in this paper has been im-
plemented in the open-source Ariadne library [15] for the analysis
of nonlinear hybrid systems. The computational kernel of Ariadne
is founded on the principles of Computable Analysis, meaning that
it is possible to rigorously compute converging approximations
either from outside or from inside. The current 1.0 stable version,
referenced in the official website [35], allows to model systems
as HIOAs. In this version the composed system must be closed in
order to compute its evolution. Composition is performed stati-
cally, which allows for checking the correct definition of the whole
system before any evolution is computed, but conversely does not
scale well for large systems.

The development version of Ariadne 2.0, also reachable from the
official website, uses instead on-the-fly composition. The current
automaton model does not have an explicit notion of input/output
variables and events: instead, the input/output character is deduced
based on the product of the components. Work is under way on
the modeling of inputs using differential inclusions: evolution for
the continuous case is already available [21], while the extension
to the hybrid case is next on schedule. Consequently, as soon as
differential inclusions are handled in the hybrid domain in Ariadne,
it will be possible to perform system decomposition and to provide
an experimental evaluation of the proposed methodology.

While this paper and the corresponding implementation in Ari-
adne are the only works that additionally address computability,
compositional approaches can be found in other tools as well. The
SpaceEx tool specifically uses HIOAs (see [18] for the details) and
allows for modularity and hierarchy. The MATLAB library called
CORA uses its own compositional format and performs both static
and on-the-fly composition; [27] gives an application of the method-
ology, even though their syntax and semantics have not been pub-
lished. Finally, we care to mention HyPro [33]. The current im-
plementation allows to describe hybrid automata compositionally,
but the actual analysis routines are still under development. The
proposed approach would analyze the components individually,

neither computing the full product automaton nor composing loca-
tions on-the-fly. Instead, it would analyze locally and synchronise
the analysis processes whenever required.

7 CONCLUDING REMARKS
Our objective in this paper has been to provide a theory for com-
putable composition of HIOA (missing in the literature), as a pre-
requisite to develop a library grounded on a sound theory that
exploits these results. Specifically, we considered a class of hybrid
input/output automata and studied a compositional approach to
obtain sets of hybrid traces that are amenable to approximate com-
putations. To obtain well-posedness, we restricted the continuous
dynamics of ordinary HIOAs to be defined in terms of differential
equations based on locally Lipschitz functions with linear growth.
After identifying the appropriate topologies, we introduced a com-
positional concept of upper and lower semicontinuity for HIOAs,
which leads to upper and lower semicomputability, thus allowing
us to address effectively the reachability problem on a large class
of non-linear hybrid systems. As a side result we also identified
a construction for the best upper and lower approximations of a
HIOA.

Although this paper shows in a concise and effective way how
to deal compositionally with computability within hybrid systems,
it is our goal to extend the results to more general classes of Hybrid
I/O Automata, e.g., by removing restictions, by identifying other
compositional classes of dynamics, and by dealing with differential
inclusions. We also aim to find conditions under which composition
can be performed at the level of hybrid trajectory sets.We expect the
layout outlined in this paper to be maintained, though intertwined
with several further details that, if addressed at this stage, would
hide the main idea that makes compositionality work. It is our
objective to simplify the details so that our generalizations continue
to keep the clean mathematical structure that we have obtained so
far.

Finally, implementation of reachability analysis routines for hy-
brid open systems is under way in Ariadne. Future work will
describe the implementation and demonstrate the advantage of the
proposed compositional approach from the experimental viewpoint.
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