
Correct-by-construction code generation from
hybrid automata specification

Davide Bresolin, Luigi Di Guglielmo, Luca Geretti, and Tiziano Villa
Dipartimento di Informatica – Università di Verona, Italy

{davide.bresolin, luigi.diguglielmo, luca.geretti, tiziano.villa}@univr.it

Abstract—In the last years hybrid automata have been applied
in the design and verification of embedded systems. Once a hybrid
model of the system has been proved to be correct with respect to
the desired properties, it would be valuable to extract a correct-by-
construction HW/SW implementation of it. This work discusses a
methodology and a corresponding tool chain that allow to extract
a HW/SW implementation of a controller modeled by a subclass
of timed automata, named elastic controllers, operating in an
environment represented by a hybrid automaton. The required
tools have been either developed from scratch or extended from
the current state-of-the-art in order to support an automated flow
from hybrid automata specifications to correct-by-construction
discrete implementations described in the SystemC language.

Index Terms—hybrid automata; code generation; SystemC;
verification; implementability; embedded systems;

I. INTRODUCTION

When designing embedded systems, often the need arises
to model systems having a mixed discrete and continuous
behaviour that cannot be characterized faithfully using either a
discrete or continuous model only. An example is an automo-
tive powertrain system, where a four-stroke engine is modelled
by a switching continuous system and is controlled by a
digital controller. Such systems consist of a discrete control
part that operates in a continuous environment and are named
cyberphysical or hybrid systems because of their mixed nature.
Hybrid automata are a powerful formalism for the design and
verification of such embedded systems [1], since they allow
to describe, in the earlier design phase, the functional and
quantitative temporal aspects of the continuous and discrete
components, and can be composed together generating a model
of the whole system that can be formally verified. However,
while the problems of modeling and verifying networks of
hybrid systems are extensively studied in the literature, much
less work has been done in developing techniques to automate
the subsequent phases of the design flow. Once a hybrid model
of the system has been proved to be correct with respect to
the desired properties, it would be valuable to extract a correct
by construction HW/SW implementation of it. This is called a
refinement phase: given a high-level description of the system,
refine it into another description such that all the “important”
properties of the original one are preserved.

Even though many tools support automatic code generation
from the hybrid model (for example, Matlab Simulink [2],
Ptolemy [3]), the emphasis has been on performance-related

978-1-4244-9538-2/11/$26.00 c©2011 IEEE

optimizations, and many issues relevant to correctness are not
satisfactorily addressed. First, the precise relationship between
the model and the generated code is rarely specified or for-
malized. Second, the continuous blocks are either ignored, or
discretized before code generation [4]. Finally, code generation
typically means generation of tasks, and does not incorporate
scheduling. Consequently, the correspondence between the
model and the code is broken, and formal verification results
established for the model are not meaningful for the code.

This work proposes a complete framework for refinement
from the hybrid down to the discrete domain of embedded
systems, originally specified by a network of hybrid automata
modeling the embedded system and its continuous environ-
ment. By a correct-by-construction procedure (relying on the
theory of Almost-ASAP semantics [5]) we generate code in
the SystemC language and compute performance bounds to be
satisfied by any conservative concrete hardware implementa-
tion. This refinement methodology provides the first complete
platform for the embedded design community to experiment
with automatic code generation of a system specified with
hybrid automata. This enabling technology realized with open
source code is a first step to address the open problems both in
theory (how to extend the class of hybrid controllers that can
be synthesized automatically?), and in practice (what is the
most “efficient” transformation from the hybrid to the discrete
domain to favour scalability?).

The paper is organized as follows. Section II summarizes
the related works. Section III describes the proposed method-
ology for code generation from the specification of hybrid
automata. Section IV describes two case studies on which the
methodology has been applied. Finally, Section V is related
to concluding remarks.

II. RELATED WORKS

Only few works in literature focus on the correct-by-
construction extraction of an implementation starting from
high level hybrid models [6].

In [5] an alternative semantics for timed automata is pro-
posed to extract from a timed model C of a digital component
a correct by construction discrete implementation CD in a
systematic way. The new semantics, named Almost-ASAP,
takes into account the digital and imprecise aspects of the
hardware in which the hybrid automaton C is being executed,
i.e. it relaxes the instantaneousness and the perfect precision
typical of the hybrid models, allowing the authors to identify

Hybrid domain verification
1

Implementability analysis
2

Is safe? yes

Fix the

hybrid

model

no

Hybrid

system

model

Discrete implementation

extraction

Discrete implementation

extraction

3

Is implementable?

model

no
yes

Digital

components

model

Fig. 1. Methodology overview.

a relaxed hybrid model CR that - once formally verified -
guarantees the existence of a discrete implementation. Such an
implementation consists of a program that, executed into any
platform with a certain worst-case-execution-time and with a
sufficiently precise clock, refines correctly the original model.
Unfortunately, this methodology uses an ad hoc language to
model the hybrid system and, moreover, the generated code
can be executed only on a toy OS, i.e., BrickOS [7].

Notice that modifying the semantics may not be the only
way to enforce the implementability. Indeed, in [8] the authors
ask the question whether similar results can be obtained
without introducing a new semantics, but acting on modeling
instead, thanks to the introduction of new assumptions on the
program type or execution platform by means of changes, in
a modular way, on the corresponding models. The authors
propose an implementation methodology for timed automata
which allows to transform a timed automaton into a program
and to check whether the execution of this program on a given
platform satisfies a desired property. Unlike the work in [5],
an open problem of this approach is how to guarantee that,
when a platform P is replaced by a “better” platform P ′, a
program proved correct for P is also correct for P ′; the authors
reported examples where this does not hold for a reasonable
assumption of a “better” platform, namely, when P and P ′

are identical, but P ′ provides a periodic digital clock running
twice as fast as the one of P ; the reason is that a program
using the faster clock has a higher “sampling rate” and thus
may generate more behaviors than a program using the slower
clock, so this situation may result in a violation of properties.

III. FORMAL VERIFICATION AND REFINEMENT
METHODOLOGY

The developed methodology for extracting a correct-by-
construction discrete HW/SW implementation, starting from
a hybrid model of the system (Figure 1), is divided into three
phases:

1) Formal verification of the hybrid system. This phase
consists of formally verifying the correctness of the
hybrid model M of the system, composed of a digital
controller C and a continuous environment E , against the

set P of properties that the system should respect, i.e.,
C is able to safely handle E according to the set P of
properties.

2) Implementability analysis. This phase consists of deter-
mining if a discrete implementation CD of the digital
controller can preserve the functional and temporal
behaviors of the original hybrid model C, i.e., CD is able
to safely handle E according to the set P of properties.

3) Extraction of the discrete implementation. This phase
consists of refining the hybrid model of the digital
controller C by extracting a discrete implementation CD
which captures the functional and temporal aspects of
its original hybrid model.

The novel aspects of the proposed methodology are de-
scribed thoroughly in the following sections.

A. Implementability Analysis

Environment

[CIF]

Controller

[CIF]

System

model

Properties

Region of space

1

engine

Ariadne

Formal Hybrid Verification

model

�

engine

Fig. 2. Formal Hybrid Verification flow.

Environment

[CIF]

Controller

[CIF] Properties

Region of space

2

engine

Relaxed

Controller

model

Environ-

ment

model

Ariadne

Implementability Analysis

Δ

engine
System model

Fig. 3. Implementability Analysis flow.

Once the hybrid model M has been proved to be correct
by formal hybrid verification (Figure 2), i.e., the controller
C safely handles the environment E under the assumption
of infinite variables precision and zero-delays typical of the
hybrid domain, it is possible to proceed with the analysis of
the system implementability (Figure 3). This analysis faces the
problem of the semantic gap between the hybrid models and
the discrete implementations. In particular:
• infinite precision. Variables of hybrid automata take their

values from a dense set (i.e. R), whereas variables in

the hardware domain are always discrete and thus have
limited precision;

• instantaneousness. Communication between the interact-
ing components of the hybrid model is instantaneous,
whereas communication in real implementations always
introduces delays and it is mandatory to make sure
that the control strategy remains correct when the latter
happen.

For these reasons, a model that has been proved correct in
the traditional semantics may not be implementable (at all),
or it may not be possible to turn it automatically into an
implementation that is correct by construction [9].

As a consequence, an implementability analysis must take
into account the digital and imprecise aspects of the hardware
on which the discrete model of the digital component is being
executed. In particular, it concerns:
• the relaxation of the variable precision: continuous vari-

ables can be modeled only with a finite precision and
consequently they are rounded according to the HW
platform characteristics;

• the relaxation of the instantaneousness of reaction to
timeouts and events: any reaction to a timeout and an
incoming or outgoing event introduces delays that depend
on the HW platform characteristics.

By considering these relaxations, it is possible to determine if
the hybrid model of a digital component can be refined into a
discrete implementation. This relaxed model is characterized
by a parameter δ such that:
• δ relaxes the continuous variable precision. The guards

of the transitions that involve the evaluation of the contin-
uous variable are parameterized by δ, simulating variable
rounding;

• δ relaxes the reactions to timeouts. Any transition that
can be taken by the automaton becomes urgent after a
small delay modeled by the parameter δ;

• δ relaxes the reactions to events. A distinction is made
between the occurrence of an event in the sender (oc-
currence) and the acknowledgement of the event by the
receiver (perception). The time difference between the
occurrence and the perception of the event is bounded by
δ.

By considering such modifications to the original hybrid model
of a digital component, which are consistent with the Almost-
ASAP semantics [5], it is possible to determine how much
the model behavior can be relaxed while preserving system
correctness. Notice that the relaxed model exhibits a superset
of the original behavior, the latter corresponding to a relaxed
value ∆ = 0 for the parameter δ. Consequently, in order for
the relaxed model to be implementable at all, a necessary
condition is that there exists a value ∆ > 0 for which the
required properties are satisfied (Figure 1).

Currently, the proposed approach is valid on a subclass
of timed automata, called elastic controllers, featuring the
following restrictions:

1) Only urgent transitions are allowed;

2) The guards must be closed expressions;
3) Communication with the environment is allowed only

through events.
4) Continuous variables are restricted to clocks (i.e. con-

tinuous variables measuring the elapsing of time).
It must be remarked that the restrictions above are perfectly
reasonable from the controller implementation viewpoint and
do not represent a major limitation in terms of applicability
of the method.

To perform the refinement analysis, we automatically extract
from M a new model M′ that, when proved to be correct
against the hybrid system specifications, guarantees the ex-
istence of a discrete implementation that refines the original
hybrid model. The model M′ is given by the composition
of the continuous environment E and the relaxed controller
CR that is obtained from C by applying the modifications
summarized above. After its generation,M′ is verified against
the set P of original properties. The verification results provide
the maximum value ∆ for δ that returns a relaxed safe system.
Given ∆, the expression ∆ > 4∆P +3∆L proved in [5] relates
it to the actual constraints of the discrete implementation such
as the clock period (∆P) and communication latency (∆L). It
holds that, if ∆ represents a strictly positive value for δ, then
a discrete implementation CD such ∆P and ∆L satisfy the
above expression is able to control the continuous environment
E respecting the original properties, and, moreover, it can be
refined automatically from C as described in the following
section.

B. Extracting the Discrete Implementation

3

Δ

Controller

model

Environ-

ment

model

Discrete

Controller

[SystemC]
engine

Environment

[CIF]

Controller

[CIF]

Discrete Implementation Extraction

System model

[SystemC]

SEXTRACT

Fig. 4. Discrete Implementation Extraction flow.

Finally, once the relaxed model turns out to be imple-
mentable, it is possible to proceed with the discrete implemen-
tation extraction phase (Figure 4) that consists of extracting
behaviors from the hybrid model in such a way that the code
implementing the digital components (e.g., the controller C) is
correct by construction.

In order to allow the correct acknowledgement of input
events and the emission of output events without missing the
synchronization with the continuous components, the gener-
ated discrete implementation is composed of several threads:
• a main thread with period ∆P that implements the func-

tional aspects of the original hybrid model, in which the

Physics
x = fINB(a) -fOUTB(x)
.

a) Tank automaton

b) Valve automaton

Opening
a = 1/Ta

.
Closing
a = - 1/Ta

.
Idle
a = 0
.

a ≥ 1

a ≤ 0OPEN?

CLOSE?

OPEN? CLOSE?

CLOSE?

OPEN?

Deep

Increase

t = 1

t ≤ T

.

t ≥ T

OPEN!

HIGH?

Decrease

t = 1

t ≤ T

.
Nothing

t = 1
.

t := 0

t ≥ T

CLOSE!

LOW?

t := 0

b) Valve automaton

c) Evaluator automaton d) Timed controller automaton

HIGH! LOW!
x ≥ xhigh x ≤ xlow

Deep
x ≥ Xlow

Shallow
x ≤ Xhigh

Fig. 5. Hybrid model of the watertank system.

guards of the transitions related to timeouts are annotated
with the temporal constraint ∆ so that no active transition
is missed due to clocks rounding;

• many input handler threads (one for each input event)
aiming (in a ∆L time units window) to catch and dispatch
to the main thread the input events coming from the
environment, in such a way that even asynchronous inputs
can be correctly detected by the periodic main thread.

The discrete model obtained in this way is described by
means of SystemC [10]. SystemC is the de facto ESL (Elec-
tronic System Level) language based on C++. Thus, unlike
plain sequential C code, its adoption allows to handle real-time
HW/SW components at different abstraction levels (TLM and
RTL) guaranteeing that the generated description can be used
as a reference model for the discrete refinement phase. Indeed,
the SystemC simulation and verification environment gives the
possibility to exploit current existing assertion-based verifica-
tion methodologies to validate the discrete implementation at
each step of the subsequent discrete refinement process.

IV. CASE STUDY

The methodology described in this work has been validated
on two hybrid systems: the watertank system [11], and the
Power Supply Selector (PSS) system that comes from an
industrial example [12].

The watertank system is depicted in Figure 5, where four
different automata are shown: a tank, a valve, an evaluator and
a timed controller. Briefly, the system is centered on a water
tank, which is characterized by an uncontrolled outbound
water flow, while the inbound water flow is controlled by the
aperture of a valve. The controller acts on the aperture of the
valve a in order to keep the water level x in a safe interval
xmin < x < xmax.

The hybrid model depicted in Figure 6 represents the Power
Supply Selector (PSS) included in the MAGALI platform [12].
The basic behavior of the PSS is to control the supply voltage
Vc of a generic unit of the platform. More precisely, due to
DVFS (Dynamic Voltage and Frequency Scaling) operations,
the supply voltage can switch dynamically between two values,

a) Environment automaton

Rise
v
d

= C
1
+C

2

. Fall
v
d

= C
1
- C

2

.Idle
v
d

= C
1

.

k
1

≥ T
1

UP?

DOWN?

UP? DOWN?

DOWN?

UP?

k
1

≥ T
1

b) Controller automaton c) Evaluator automaton

N2P!

v
d

≥ H v
d

≤ -H

Pos
v

d
≥ -H

Neg
v

d
≤ H

P2N!

UP!

t
out

≥ T

Incr
t

out
≤ T

Decr
t

out
≤ T

DOWN!

P2N? N2P?

N2P?

P2N?

t
out

≥ T

Fig. 6. Hybrid model of the Power Supply Selector system.

High and Low. During such transitions, the supply voltage Vc
(which supplies the considerable load given by the equivalent
resistance of the core circuit) must follow a linearly rising/-
falling reference voltage Vr as closely as possible. Essentially,
a controller provides periodic UP or DOWN events that
ultimately make the supply voltage rise or fall by a fixed step
of voltage: by ensuring that the controller issues events at
a properly high frequency, the core voltage can follow the
reference voltage, guaranteeing a bounded voltage difference
Vd between Vr and Vc.

A. Formal Safety Verification

The first step of the methodology consists of verifying the
two systems against the properties they should satisfy. To
check the watertank system we used the following simple
property ϕ = always(x < xmax & x > xmax) that requires
that the water level x is always kept between the safe bounds
xmax = 8.25 and xmin = 5.25 (while xhigh = 8.0 and xlow =
5.5). To check the PSS system, instead, the property chosen
was ψ = always(Vd >= −L & Vd <= L), meaning that the
voltage difference Vd = Vr − Vc must maintain an absolute
value not greater than L = 0.1. Thanks to the adoption of the
Compositional Interchange Format (CIF) [13] for modeling
the two hybrid systems, it has been possible to interface to
already existing verification tools for hybrid models such as
Ariadne [14]. Ariadne can read a CIF description of the system
in which each component is modeled as a separate automaton
composed with the others by using parallel composition. This
notably simplifies the system design due to the fact that the
composed system is automatically generated from the single
automata by the internal engine of the tool. Ariadne can check
safety reachability properties that are internally converted into
a region of space: the system is safe as long as its reached
region lies inside the safe region. Due to the conservative
rounding of values, the reached region is provided as an over-
approximation of the actual region; it must be noticed that
the quality of the approximation depends on the evolution
and discretisation parameters chosen. In particular, while low

quality can prevent verification in some cases, high quality
necessarily requires a longer verification time. For this reason,
Ariadne implements an iterative mechanism for verification: it
starts using a low-quality approximation and refines it until
an answer to the verification problem is obtained. If a positive
answer is ultimately found, then the system is safe in the ideal
case of infinite clock precision and zero-delays.

!

"

!"#$

%#"#$

&

!"#$!"#$%#"&'

#
$

%
&'%

#"!$

%#"!$

%#"##! #"#!$

!%#$())

'"$

Fig. 7. (a) Watertank: projection on the x-a plane of the reachable region (in
the center) and of the unsafe region (on left and right), where x is the water
level and a is the valve aperture. (b) PSS: projection on the tout-Vd plane
of the reachable region (in the center) and of the unsafe region (on top and
bottom), where tout is the controller clock and Vd is the voltage difference.

Figure 7 shows the results of the reachability analysis
performed by Ariadne, respectively for (a) the watertank and
(b) the PSS systems. Notice that an overapproximation of the
systems evolution is shown after discretization as a set of
boxes in the center of the figures, while the unsafe regions
are the ones represented at the left and right extremes in
(a) and at the top and bottom extremes in (b). Since the
(overapproximated) reachable regions do not intersect the
unsafe regions, the systems are safe.

B. Implementability Analysis

Once the hybrid models were proved to be correct, we
performed the subsequent implementability analysis phase.
Notice that we extended the internal engine of Ariadne to
realize automatically the transformations that determine the
implementability of a hybrid model. Thus, after loading the
hybrid models into Ariadne, the tool generated the correspond-
ing relaxed models and provided the maximum value ∆ that
sets bounds on the relaxed safe systems. For the watertank
system, the tool returned an upper bound for ∆ equal to
0.289898872375, for which the relation ∆ > 4∆P +3∆L must
hold. For example, if our platform is characterized by a com-
munication latency upper bounded by 1 ms (i.e. ∆L ≤ 1/1000
sec.), the clock frequency of the controller must be greater or
equal than 14 Hz (i.e. ∆P ≤ 1/14 sec.). A choice of ∆P and
∆L for which the relation above does not hold would possibly
cause either a failure in capturing input events, or a failure
in providing output events with sufficient promptness. Which
of these two cases is ultimately responsible for an undesired
behavior of the environment actually depends on the temporal
evolution of the system. For the PSS system, the tool retrieved

an upper bound for ∆ equal to 0.00112487792969. Again, if
for example the communication delay is upper bounded by 60
µs, then the controller must guarantee a clock frequency not
slower than 10 Mhz (i.e., a clock precision of at least 10 µs).

C. Discrete Implementation Extraction

Once the controllers embedded into the two systems are
verified as being implementable, by using Sextract it is pos-
sible to extract their discrete implementations. We developed
Sextract from scratch in such a way that it reads the system
implementation (i.e. the CIF model of the controller C and
the environment E) and the value ∆ synthesized during the
implementability analysis phase, and extracts the functional
behaviors of the hybrid model of C annotated with the cor-
responding temporal constraint ∆. Such an implementation
provides a refinement of the functionalities of the timed
controller that allows the correct acknowledgement of input
events and the emission of output events, coming from and
destined to the environment respectively.

The structure of the implementations (Listing 1 and 2)
is characterized by (i) a main thread that models the con-
troller behavior (e.g. WTcontroller::automaton() and PSScon-
troller::automaton()) and (ii) support threads that handle the
incoming events (e.g. WTcontroller::check HIGH() and PSS-
controller::check N2P()) notifying them to the related main
thread. The execution of such threads is completely managed
by the SystemC simulation kernel [10].

About the controller, it is worth noting how its model is
refined: (i) the guards of the transitions related to timeouts
are annotated with the temporal constraint ∆ to identify
correctly the transitions active in presence of discrete clocks
(e.g. Listing 1 line 21), (ii) support functions are used to handle
clocks values (i.e. get/set functions for handling the rounding)
and (iii) incoming events are detected by reading the value
of the variable set by the related event-handler thread (e.g.
check HIGH() and check LOW()).

These implementations described by means of SystemC can
be used as they are or can be wrapped into SystemC TLM
components. Thus, it is possible to use one of the already
existing methodologies for going on with the discrete refine-
ment phase. Moreover, the adoption of SystemC also allows
to exploit assertion-based verification approaches described in
literature to check the correctness of the subsequent refined
implementations.

1 #include ” . . / i n c / c o n t r o l l e r . h ”
2 const double controller::T = 0.1;
3 const double controller::delta = 0.289898872375;
4 void WTcontroller::automaton() {
5 local_modes automaton_mode = nothing;
6 while (true) {
7 wait();
8 if (automaton_mode == nothing) {
9 if (LOW_pending) {

10 LOW_read.write(!LOW_read.read());
11 set_clock_value(t, 0);
12 automaton_mode = increase;
13 } else if (HIGH_pending) {
14 HIGH_read.write(!HIGH_read.read());
15 set_clock_value(t, 0);
16 automaton_mode = decrease;
17 }

18 } else if (automaton_mode == increase) {
19 tcp(is_le(get_clock_value(t), 0.1));
20 if (is_ge(get_clock_value(t), 0.1 - delta)) {
21 OPEN.write(!OPEN.read());
22 automaton_mode = nothing;
23 }
24 } else if (automaton_mode == decrease) {
25 tcp(is_le(get_clock_value(t), 0.1));
26 if (is_ge(get_clock_value(t), 0.1 - delta)) {
27 CLOSE.write(!CLOSE.read());
28 automaton_mode = nothing;
29 }
30 }
31 }
32 }
33 void WTcontroller::check_HIGH() {
34 if (HIGH.event()) {
35 HIGH_pending = true;
36 } else if (HIGH_read.event()) {
37 HIGH_pending = false;
38 }
39 }
40 void WTcontroller::check_LOW() {
41 if (LOW.event()) {
42 LOW_pending = true;
43 } else if (LOW_read.event()) {
44 LOW_pending = false;
45 }
46 }

Listing 1. The discrete model of the Controller of the Watertank system.

1 #include ” . . / i n c / C o n t r o l l e r . h ”
2 const double Controller::T = 0.01;
3 const double Controller::delta = 0.00112487792969;
4 void PSScontroller::automaton() {
5 local_modes automaton_mode = Incr;
6 while (true) {
7 wait();
8 if (automaton_mode == Incr) {
9 tcp(is_le(get_clock_value(t), 0.01));

10 if (is_ge(get_clock_value(t), 0.01 - delta)) {
11 UP.write(!UP.read());
12 set_clock_value(t, 0);
13 automaton_mode = Incr;
14 } else if (P2N_pending) {
15 P2N_read.write(!P2N_read.read());
16 automaton_mode = Incr;
17 } else if (N2P_pending) {
18 N2P_read.write(!N2P_read.read());
19 automaton_mode = Decr;
20 }
21 } else if (automaton_mode == Decr) {
22 tcp(is_le(get_clock_value(t), 0.01));
23 if (is_ge(get_clock_value(t), 0.01 - delta)) {
24 DOWN.write(!DOWN.read());
25 set_clock_value(t, 0);
26 automaton_mode = Decr;
27 } else if (N2P_pending) {
28 N2P_read.write(!N2P_read.read());
29 automaton_mode = Decr;
30 } else if (P2N_pending) {
31 P2N_read.write(!P2N_read.read());
32 automaton_mode = Incr;
33 }
34 }
35 }
36 }
37 void PSScontroller::check_N2P() {
38 if (N2P__event()) {
39 N2P_pending = true;
40 } else if (N2P_read__event()) {
41 N2P_pending = false;
42 }
43 }
44 void PSScontroller::check_P2N() {
45 if (P2N__event()) {
46 P2N_pending = true;
47 } else if (P2N_read__event()) {
48 P2N_pending = false;
49 }
50 }

Listing 2. The discrete model of the Controller of the PSS system.

V. CONCLUDING REMARKS

The development of techniques for the extraction of correct-
by-construction HW/SW implementations of hybrid systems is
a new and valuable research area. This work proposes a com-
plete design flow for the extraction of functional aspects and
temporal constraints from hybrid systems in order to obtain a
discrete implementation. To support the methodology, we built
a tool chain which includes Ariadne, a hybrid automata verifier
extended in order to support the discretization semantics, and
Sextract, a new tool able to extract the necessary constraints
from the system and ultimately generate its discrete imple-
mentation code. To the best of our knowledge, this is the first
example of a complete automatic flow that goes from a hybrid
model down to a SystemC implementation of it.

ACKNOWLEDGMENTS

This research was partly supported by the EU projects FP7-IST-
1-217069 COCONUT and FP7-ICT-223844 CON4COORD.

REFERENCES

[1] T. Henzinger, “The Theory of Hybrid Automata,” in IEEE Symposium
on Logic in Computer Science (LICS), 1996, pp. 278 – 292.

[2] The MathWorks, Inc., “Simulink 7.6,” http://www.mathworks.com,
2010.

[3] Center for Hybrid and Embedded Software Systems (CHESS), Univer-
sity of California at Berkeley, “Ptolemy II,” http://ptolemy.berkeley.edu/
ptolemyII/.

[4] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “TIMES
- A Tool for Modelling and Implementation of Embedded Systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2002, pp. 460–464.

[5] M. Wulf, L. Doyen, and J. Raskin, “Almost ASAP Semantics: from
Timed Models to Timed Implementations,” Formal Aspects of Comput-
ing, vol. 17, no. 3, pp. 319 – 341, 2005.

[6] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky, “Generating Em-
bedded Software from Hierarchical Hybrid Models,” in ACM SIGPLAN
Conference, vol. 38-7, 2003, pp. 171–182.

[7] M. Noga, “BrickOS,” http://brickos.sourceforge.net.
[8] K. Altisen and S. Tripakis, “Implementation of Timed Automata: an

Issue of Semantics or Modeling?” in Formal Modeling and Analysis of
Timed Systems (FORMATS), 2005, pp. 273–288.

[9] F. Cassez, T. Henzinger, and J. F. Raskin, “A Comparison of Control
Problems for Timed and Hybrid Systems,” in Hybrid Systems: Compu-
tation and Control (HSCC), 2002, pp. 134–148.

[10] Open SystemC Initiative, “SystemC,” 1999, http://www.systemc.org.
[11] L. Benvenuti, A. Ferrari, E. Mazzi, and A. Vincentelli, “Contract-

based Design for Computation and Verification of a Closed-loop Hybrid
System,” Hybrid Systems: Computation and Control, pp. 58–71, 2008.

[12] E. Beigné, F. Clermidy, S. Miermont, P. Vivet, and G. MINATEC,
“Dynamic Voltage and Frequency Scaling Architecture for Units In-
tegration within a GALS NoC,” in ACM/IEEE International Symposium
on Networks-on-Chip (NoCS), 2008, pp. 129–138.

[13] C. Sonntag, R. Schiffelers, D. van Beek, J. Rooda, and S. Engell,
“Modeling and Simulation using the Compositional Interchange Format
for Hybrid Systems,” in International Conference on Mathematical
Modelling (MATHMOD), 2009, pp. 640–650.

[14] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and
A. Sangiovanni-Vincentelli, “Ariadne: a Framework for Reachability
Analysis of Hybrid Automata,” in International Symposium on Math-
ematical Theory of Networks and Systems (MTNS), 2006.

