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Abstract: Hybrid systems exhibit all the complexities of finite automata, nonlinear dynamic
systems and differential equations, and are extremely difficult to analyze. A rigorous mathemat-
ical approach is needed to achieve provable approximation bounds along the computations.
In this paper we describe a rigorous numerical calculus for working with functions that can be
used for computing the evolution of nonlinear hybrid systems, and the implementation in the
tool Ariadne for reachability analysis of hybrid systems. The method is based around expressing
the sets attained during the evolution in terms of functions, and computing approximations to
these functions, and allows highly accurate approximations for the evolved sets to be computed.
An example of the control of the water level in a tank is presented.
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1. INTRODUCTION

Hybrid systems are dynamic systems in which continuous
evolution is interspersed with discrete events triggered by
conditions on the continuous state. They typically occur in
applications in which digital sensors and actuators interact
with the physical world, but can also be used to model
purely physical phenomena such as impact systems or
electrical circuits with diodes and switches. The analysis of
hybrid systems is extremely difficult, since hybrid systems
exhibit all the complexities of finite automata, nonlinear
dynamic systems and differential equations, and addition-
ally have discontinuities and singularities in the evolution
due to the switching.

There are many software tools for reachability analysis
and/or verification of hybrid systems, mostly restricting
to a subclass of system. The Ariadne software package is
an ambitious attempt to provide analysis and verification
tools for general nonlinear hybrid systems. The original
functionality, as described in Benvenuti et al. [2008], was
based on affine approximations of the continuous dynam-
ics, and while being fast and reliable, was not accurate
enough for strongly nonlinear systems, especially when
making discrete transitions. A new computational kernel
was subsequently developed, based on rigorous numerical
methods for working with real numbers, functions and sets
in Euclidean space, using techniques such as interval arith-
metic, automatic differentiation and polynomial function
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models as a foundation. The purpose of this paper is to
describe the low-level operations on sets and functions that
have been used to build up the high-level algorithms for
the analysis of hybrid systems in Ariadne.

The paper is organised as follows. In Section 2, we de-
scribe the class of hybrid system we work with, and in
Section 3 we describe the evolution in terms of functions
and constraints. In Section 4, we describe relevant existing
rigorous numerical methods, and in Section 5 we describe
the function calculus as implemented in Ariadne. In Sec-
tion 6 we describe how the function calculus is used in
Ariadne to compute the evolution of hybrid systems. We
give an example of controlling the level of water in a tank in
Section 7, and in Section 8 we give a comparison with other
tools for analysing hybrid systems. Concluding remarks
are given in Section 9.

2. HYBRID SYSTEMS

In this section we describe a simple framework for nonlin-
ear hybrid systems.

A hybrid system is a tuple

H = (Q ,E ,T , (nq , fq)q∈Q , (pq,e , aq,e , rq,e)q,e∈dom(T))

where:
Q is a finite set of locations,
E is a finite set of events,
T : Q × E 7→ Q is the transition map,

fq : Rnq → Rnq is the continuous dynamic,

pq,e : Rnq → R is a progress function
aq,e : Rnq → R is an activation function,
rq,e : Rnq → RnT(q,e) is the reset map.



The state space is the set
∪

q∈Q{q} × Rnq .

A trajectory of a hybrid system H comprises continuous
evolution interspersed with discrete events. The continu-
ous dynamics in location q is governed by the differential
equation ẋ = fq(x ). When an event e occurs, the location
transitions to q ′ = T (q , e), and the continuous state is
updated by the reset into x ′ = rq,e(x ). The event e
may only occur if the activation condition aq,e(x ) ≥ 0
holds, and continuous evolution may only occur while the
progress conditions pq,e(x ) ≤ 0 hold for all events e. If
pq,e = aq,e , then the event e is urgent (in location q),
and we combine the progress condition and activation
condition into a guard condition gq,e(x ) = 0.

We let ΞH denote the set of trajectories of H , and
ΞH (X0,T ) the set of points attained by all trajectories
starting from a point x0 ∈ X0 at a time t ∈ T . The
fundamental problem of hybrid systems is to compute
the set of trajectories Ξ, and the finite-time reachable
set R = ΞH (X0, [0, tf ]) and evolved set E = ΞH (X0, tf ).
Due to results of [Collins and Lygeros, 2005, Collins,
2011], these sets cannot always be computed to arbitrary
accuracy, but only lower- or over-approximations may be
computed, depending on the exact semantics of evolution.

3. EVOLUTION OF A HYBRID SYSTEM

In this section, we give a mathematical overview of the
evolution of a hybrid system.

The continuous state reached at time tf starting at time
t0 from point x0 ∈ X0 with a single event e1 occurring at
time t1 with reset r1 is

xf = ϕ1(r1(ϕ0(x0, t1 − t0)), tf − t1).

Here ϕi : Rnqi × R → Rnqi is the flow of the differential
equation ẋ = fqi (x ) for location qi , and satisfies

ϕ̇i(x , t) = fqi (ϕ(x , t)); ϕi(x , 0) = x .

If a1(x ) ≥ 0 is the activation condition for the event e1 in
location q0, then

a1(ϕ0(x0, t1 − t0)) ≥ 0,

yielding a constraint on the event time t1. If p(x ) ≤ 0 is a
progress condition in location q0, then

supt∈[t0,t1] p(ϕ0(x0, t − t0)) ≤ 0.

The set of points attained at time tf starting from a point
in X0 after a non-urgent event at time t1 with activation
condition a1 ≥ 0 and progress conditions p1 ≤ 0 and
p2 ≤ 0, assuming there are no other possible events, can
therefore be represented as

E ={ϕ1(r(ϕ0(x0, t1 − t0)), tf − t1)

| (x0, t1) ∈ X0 × [0, tf ]

| a1(ϕ0(x0, t1 − t0)) ≥ 0

∧ supt∈[t0,t1]p1(ϕ0(x0, t − t0)) ≤ 0

∧ supt∈[t0,t1]p2(ϕ0(x0, t − t0)) ≤ 0}.
This is the most general form for the evolved set, but the
presence of the conditions supt∈[t0,t1] pi(ϕ0(x0, t − t0)) ≤
0 makes this class of set very hard to work with. We
therefore seek conditions under which we can simplify the
representation of the evolved set E .

The rate of change of p(x (t)) along solutions of ẋ = f (x )
is given by the Lie derivative

Lf p := ∇p · f .
The crossing of the flow line ϕ(x0, t) with the progress set
boundary p(x ) = 0 is transverse if

d
dt p(ϕ(x0, t)) ̸= 0 when p(ϕ(x0, t)) = 0.

We see that crossings are transverse if(
∇p · f

)
(y) ̸= 0 whenever p(y) = 0.

In this case, the progress constraint reduces to

p(ϕ(x0, t1 − t0)) ≤ 0.

If the event e is urgent, then the guard constraint

g(ϕ(x0, t1 − t0)) = 0 ∧ supt∈[t0,t1]g(ϕ(x0, t − t0)) ≤ 0

reduces to
g(ϕ(x0, t1 − t0)) = 0.

Further, the crossing time t1 can be computed as a function
t1 = γ(x0). Note that the assumption that the event occurs
at a time t1 ∈ [t0, tf ] implies range(γ) ⊂ [t0, tf ].

If e1 is urgent and crossings of g1 and p2 are transverse, we
therefore obtain the following forms for the evolved set:

E ={ϕ1(r(ϕ0(x0, t1 − t0)), tf − t1) | (x0, t1) ∈ X0 × [0, tf ]

| g1(ϕ0(x0, t1 − t0)) = 0 ∧ p2(ϕ0(x0, t1 − t0)) ≤ 0}
={ϕ1(r(ϕ0(x0, γ1(x0)− t0)), tf − γ1(x0)) | x0 ∈ X0

| p2(ϕ0(x0, γ1(x0)− t0)) ≤ 0}.

A grazing contact is a quadratic tangency of the flow line
with the progress set boundary, and is characterised by

L2
f p(y) < 0 whenever Lf p(y) = p(y) = 0.

In this case, we can compute the critical time µ(x0) at
which the p(ϕ(x0, t)) reaches a maximum. The progress
condition then reduces to(

t1 ≤ µ(x0) ∧ p(ϕ0(x0, t1 − t0)) ≤ 0
)

∨
(
t1 ≥ µ(x0) ∧ p(ϕ0(x0, µ(x0)− t0)) ≤ 0

)
.

Note that the condition t1 ≥ µ(x0) is unnecessary.

In the neighbourhood of a point where the flow has a cubic
or higher-order tangency with the progress set boundary
i.e. if p(y) = 0, Lf p(y) = 0 and L2

f p(y) = 0, it is possible
in principal to find formulae for the evolved sets using
higher-order singularity theory, but these quickly become
unwieldy. However, when computing over-approximations
to the evolution, we can always use the fallback conditions
p(ϕ(x0, t1 − t0)) ≤ 0.

The evolved set E , or in the presence of singular crossings,
an under- or over-approximation of E , can therefore be
represented as a constrained image set having the form

S = {f (z ) | z ∈ D | g(z ) ≤ 0 ∧ h(z ) = 0}.
Here, z is the parameter, D = [d1, d1]× . . .× [dp , dp ] ⊂ Rp

is a bounded coordinate-aligned box giving the parameter
domain, f : D → Rn give the spacial coordinates of the set,
g : D → Rm are the inequality constraints and h : D → Rl

are the equality constraints. An alternative form, which
does not emphasise the distinction between inequality and
equality constraints, is

S = {f (z ) | z ∈ D | g(z ) ∈ C} = f (D ∩ g−1(C ))

where D and C are coordinate-aligned boxes.
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Fig. 1. Steps in computing the evolution of a hybrid
system. (a) Compute the flow from a starting set.
(b) Determine which initial points undergo which
transitions and compute the transition times. (c)
Apply the reset map to the jump points. (d) Continue
evolution in the new locations.

The main advantage of constrained image sets is that they
are sufficiently general to be able to represent reach and
evolve sets arising in the evolution of a hybrid system
directly, but sufficiently restrictive to be reasonably easy
to work with.

The analysis above shows that in order to compute the
evolution of a hybrid system, it suffices to implement
operations for computing:

— the composition of functions;
— the range of a function;
— the flow of a differential equation;
— the solution of an algebraic equation.

In order to analyse the solution, including discretising
reachable sets for global analysis, we also need to

— test feasibility of a constraint satisfaction problem.

Additionally, the following is very useful for user output:

— drawing a constrained image set in R2.

Notice that all these operations can be expressed in terms
of boxes in Rn and functions f : Rn → Rm . This suggests
an approach to the analysis of nonlinear hybrid systems
by the development of a function calculus, in which these
operations are implemented rigorously and efficiently.

4. RIGOROUS NUMERICAL METHODS

The real numbers R and the set of continuous functions
Rn → Rm have continuum cardinality, so there is no pos-
sible way of describing all elements exactly using a finite
amount of data. The traditional approaches to handling
uncountable sets computationally are either to restrict
to a countable subset and use symbolic manipulation, or
to work with approximations in a finite subset. For the
purpose of verification of hybrid systems, neither approach
is feasible; in the former, the computations take far too
long, and in the latter, we lose mathematical rigour. In-
stead, we use rigorous numerical methods to perform the
computations.

The main idea of rigorous numerics is to represent an
element x of an uncountable set X by a set x̂ containing x .

The set x̂ is taken from a countable set X̂ of subsets of X ,
and has a concrete description given by a finite amount of
data. An implementation of an operation op : X1 × · · · ×
Xn → Y is a function ôp : X̂1 × · · · × X̂n → Ŷ such that
the following inclusion property holds:

x̂i ∋ xi for i = 1, . . . ,n

⇒ ôp(x̂1, . . . , x̂n) ∋ op(x1, . . . , xn).

The most well-known example of a rigorous numerical
calculus is interval arithmetic [Moore, 1966]. A real num-
ber x ∈ R is represented by an interval [x , x ] ∋ x . Typ-
ically, the endpoints x , x are taken to lie in a set F of
floating-point numbers of a given precision. Arithmetical
operations preserving the inclusion property can be im-
plemented using rounded arithmetic, which are built-in
for modern microprocessors. An interval extension of a
function f : R → R is a function [f ] on intervals satisfying
the inclusion property

x ∈ [x , x ] ⇒ f (x ) ∈ [f ]([x , x ]).

A powerful rigorous calculus for continuous functions
Rn → R is based around the Taylor models of Makino and
Berz [2003]. A Taylor model for a function f : Rn → R is

a pair f̂ = (T , I ) where T is a polynomial in n variables
with coefficients in F and I an interval satisfying

∀ z ∈ [−1,+1]n , f (z )− T (z ) ∈ I .

Taylor models for functions on a domain D other than
[−1,+1] can be constructed by pre-composing f with s−1,
where s is a scaling function [−1,+1]n → D .

ba

s−1

−1 +10

f(x)

x z

T (z)
I

Fig. 2. A scaled Taylor model.

The usual operations on functions, including arithmetic,
evaluation, composition, and antidifferentiation, can be
extended to Taylor models, and satisfy the inclusion prop-
erty. The interval I is used to capture the round-off errors
introduced by floating-point arithmetic. The efficiency of
Taylor models relies on sweeping terms of T with small
coefficients into the interval I .

Taylor models can be computed using a Taylor series with
remainder term; in one-dimension we have

T (z ) =
∑n−1

k=0
1
k ! f

(k)(0) z k ; I = 1
n! [f

(n)]([−1,+1]).

The derivative of f can be computed using automatic
differentiation [Griewank, 2000], which is useful in many
areas of rigorous numerics.

Algebraic equations f (x ) = 0 for f : Rn → Rn can be
solved using the interval Newton operator [Moore, 1966],
defined as

N (f , ŷ , ỹ) = ỹ − [Df (ŷ)]−1f (ỹ),

where ŷ is a box and ỹ ∈ ŷ . If N (f , ŷ , ỹ) ⊂ ŷ , then the
equation f (y) = 0 has a unique solution in ŷ , whereas if



N (f , ŷ , ỹ)∩ ŷ = ∅, then there are no solutions in ŷ . A tight
approximation to the solution is found by the iterative
process

ŷn+1 = N (f , ŷn , ỹn) ∩ ŷn .

There are many methods in the literature for solving
differential equations [Lohner, 1987, Berz and Makino,
1998, Nedialkov et al., 1999, Zgliczynski, 2002]. However,
most use some variation on the following procedure to
compute the flow ϕ of ẋ = f (x ) starting in an initial set X0

at time 0 for a time step h. First a bound B is computed
such that ϕ(X0, [0, h]) ⊂ B . A sufficient condition for B
to be such a bound is that X0 + [0, h]f (B) ⊂ B . Then
the Taylor coefficients of ϕ are computed using automatic
differentiation, both at the point (x0, 0) and over the set
(B , [0, h]). Finally, the results are combined to give a set X1

containing ϕ(X0, h). As an additional step, some packages
have a reconditioning step to control the errors.

Constraint propagation [Kearfott, 1996, Jaulin et al., 2001,
Hansen, 2003] is a collection of methods for determining
solutions of {x ∈ D | f (x ) ∈ C}, where C and D are
coordinate-aligned boxes and D is bounded. The result

is given as a collection of boxes X =
∪k

i=1 Xi such that
D∩ f −1(C ) ⊂ X . The main technique is to use contractors
to reduce the size of a box Xi containing points of g−1(C ),
starting with X = D . Given a symbolic representation of g
as a directed acyclic graph, the revising hull consistency al-
gorithm [Benhamou et al., 1999] uses interval arithmetic to
propagate constraints; other contractors use monotonicity
properties of g . A particularly powerful approach [Hansen,
2003] is to introduce Lagrange multipliers to the con-
straints and solve a related optimization problem. If no
reduction in the solution set X can be made, then it is split
into two pieces, each of which are considered separately.
In order to validate a candidate solution, methods based
on applying the interval Newton test to the Karush-Kuhn-
Tucker conditions can be used.

5. SET AND FUNCTION CALCULI IN ARIADNE

The computational kernel of Ariadne is written in C++,
and provides complete support for the operations of rigor-
ous numerics described in Section 4.

The main functionality for functions and sets is based
around standard abstract interfaces which can be imple-
mented in various ways. For technical reasons due to the
handling of polymorphic data types in C++, for each
interface class, a handle class is provided for users. In-
terfaces for various evaluators are also defined, with each
evaluators being required to implement a closely-related
set of operations.

In order to make the package as self-contained as possible,
and because existing software libraries did not meet re-
quirements on functionality, it was decided to implement
all necessary operations within the package itself, including
the core operations of interval arithmetic, linear algebra,
automatic differention, and polynomial arithmetic.

The main abstract function types are ExactFunction
for exact scalar functions described symbolically, and
ValidatedFunctionModel for interval functions on a box
domain.

The main class of validated function model implemented
are scaled polynomial function models, similar to Taylor
models; affine function models are also provided. Since
the only existing package implementing Taylor models,
COSY Infinity [Makino and Berz, 2006] is not open-source,
an implementation within Ariadne itself is provided. The
scaled polynomial models of Ariadne use a floating-point
error bound e rather than an interval error, and are defined
defined by a tuple (s, p, e) where

(i) s : [−1,+1]n →
∏n

i=1[d i , d i ] is a scaling function,
(ii) p : [−1,+1]n → R is a polynomial z 7→

∑
α cαz

α

with coefficients cα ∈ F, and
(iii) e ∈ F+ is an error bound.

A polynomial model (s, p, e) represents f : Rn → R if

supx∈D

(
f (x )− p ◦ s−1(x )

)
≤ e

where D =
∏n

i=1[d i , d i ] is the domain of the model.

The coefficients cα of the polynomial p are stored in
a memory-efficient sparse array format, and standard
operations of scalar and arithmetic, range, differentiation,
and antidifferentiation, are efficiently implemented. For
example, addition is performed using

(p1 ± e1) + (p2 ± e2) =
∑

α(c1,α +n c2,α)x
α

± 1
2×u

∑
uα

(
(c1,α+uc2,α)−u (c1,α+dc2,α)

)
+u (e1+ue2),

assuming the domains are equal, where ⋆u , ⋆d , and ⋆n
denote operations with rounding upwards, downwards and
to nearest, and

∑
u is sum with upwards rounding. Different

methods are provided to evaluate and compose polynomial
models, including direct evaluation and evaluation based
on Horner’s rule. Various sweepers allow the accuracy ver-
sus efficiency tradeoff of the polynomial to be controlled.

In order to compute the evolution of a hybrid system, we
need to keep track of the elapsed time as well as the current
state. A TimedEnclosure interface is provided, allowing
different concrete set types to be used to keep track of
the reach and evolved states. The most powerful timed
enclosure type implemented is based on constrained image
sets of the form

E = {ξ(z ), τ(z ) | z ∈ D | ρ(z ) ∈ C}
where ξ(z ) is the state x and τ(z ) the elapsed time t for
the parameter z , and ρ(z ) ∈ C are the constraints.

An integrator is a evaluator for computing the flow of
a differential equation. Ariadne currently provides three
integrators, an AffineIntegrator for computing the flow
of an affine system ẋ = Ax + b, a PicardIntegrator,
which uses Picard’s iteration

ϕn+1(x0, t) = x0 +

∫ t

0

f (ϕn(x0, τ)) dτ,

and a TaylorIntegrator, which computes the flow using
a Taylor series expansion. In practise, the Taylor integra-
tor outperforms the Picard integrator, since it generates
sharper error bounds after fewer iterations.

A solver is a evaluator for computing the solution of a
parameterised algebraic equation f (x , h(x )) = 0. Ariadne
implements an IntervalNewtonSolver based on the in-
terval Newton operator, and a KrawcykzSolver based on
the related Krawcykz operator, which is more reliable but
slower. The crossing time γ(x ) of the flow ϕ(x , t) with the



guard g(y) = 0 is computed by solving g ◦ϕ(x , t) = 0 with
the interval Newton iteration

γ̂n+1(x ) = γ̃n(x )−
g(ϕ(x , γ̃n(x ))

(∇g · f )(ϕ(x , γ̂n(x )))
.

The convergence rate depends on the size of (∇g ·
f )(ϕ(x , γ̂(x )).

A propagator is a evaluator for testing feasibility of the
constraint satisfaction problem z ∈ D ∧ f (z ) ∈ C . Ariadne
implements a propagator based on applying contractors
based on hull consistency and monotonicity properties.
Interior-point techniques from nonlinear programming are
used to find Lagrange multipliers to construct linear com-
binations of constraints which can be more efficiently
contracted. Splitting of the domain is performed based
on an estimation of the Jacobian to try to decrease the
nonlinearity of the function over the subdomains.

A drawer is a evaluator for drawing a set on a canvas. The
problem of efficiently and accurately drawing a constrained
image set S = f (D ∩ g−1(C )) ⊂ R2 is nontrivial since
the domain D may have a very high dimension. Ariadne
implements a simple BoxDrawer, in which D is subdivided
into boxes Di and [f ](Di) is drawn whenever [g ](Di) ∩
C ̸= ∅. The more sophisticated AffineDrawer draws
sets ⟨f ⟩(Di ∩ ⟨g⟩−1(C )), where ⟨f ⟩ and ⟨g⟩ are affine
approximations to f and g , and usually achieves good
accuracy with few subdivisions.

6. HYBRID SYSTEM EVOLUTION IN ARIADNE

The main algorithm for the computation of the evolution
of a hybrid system in the current version of Ariadne follows
the procedure outlined in Section 3. Integrators are used
to compute the flow, and solvers to compute the crossing
times. Propagators are used to compute discretisations of
sets, to check safety and liveness conditions, and to test
whether an enclosure is empty and can be removed from
consideration of the future evolution.

There are three major practical difficulties when using
the set and function calculus for computing the evolution
of a hybrid system. The first difficulty is how to handle
degenerate crossings, and is currently tackled by comput-
ing under- or over-approximations. The second difficulty
is how to avoid splitting the enclosure sets as much as
possible, since once split, sets cannot easily be recombined.
The third difficulty is how to manipulate the enclosure
sets to maintain accurate over-approximations without too
heavy a storage or computational burden.

6.1 Event scheduling

When two events are possibly active, then the evolution
splits into two pieces, one taking each event. Assuming the
events are urgent and crossing times γ1,2 can be computed,

S1 = {r1(ϕ(x , γ1(x ))) | x ∈ D | γ1(x ) ≤ γ2(x )}.
S2 = {r2(ϕ(x , γ2(x ))) | x ∈ D | γ2(x ) ≤ γ1(x )}.

Otherwise, we can write

S1 = {r1(ϕ(x , t1)) | x ∈ D , t1 ∈ [0, th ]

| g1(ϕ(x , t1)) = 0 ∧ g2(ϕ(x , t1)) ≤ 0}.

With a single active event, care must be taken to avoid
splitting the evolved set unnecessarily. Suppose the flow

ϕ over an initial domain D can be computed over a time
step th , and that ϕ(D , th) straddles a guard set g(x ) = 0.
Then the crossing time γ(x ) has th ∈ γ(D).

Fig. 3. Splitting an evolved set

The most straightforward way of continuing the evolution
is to split the set in two, with one part

{r(ϕ(x , γ(x ))) | x ∈ D | γ(x ) ≤ th}
taking the jump, and the other part

{ϕ(x , th) | x ∈ D | γ(x ) ≥ th}
not taking the jump at the current step, but delayed
until the subsequent step. Unfortunately, this splitting
doubles the work required for the subsequent evolution.
Further, the constraints added must be carried through
to subsequent sets, increasing the complexity of working
with the set. It is therefore critical to avoid splitting
the set in this situation. The current implementation in
Ariadne attempts to avoid splitting by “creeping” up to
the guard set, using a smaller step size δ(x ) satisfying
0 < δ(x ) < min{th , γ(x )}. The crossing can then be
attempted at the next time step. When there are multiple
events possible, the creep process attempts to ensure that
all constraint hypersurfaces are crossed on the same step.

6.2 Reconditioning

The accuracy of computation on polynomial models p(z )±
e is highly sensitive to the value of e; if this becomes too
large, then subsequent computations tend to lose accuracy
very quickly. In Ariadne, we implement the reconditioning
procedure of [Kühn, 1998]

{p(z )± e | z ∈ [−1,+1]n}
= {p(z1) + ez2 ± 0 | (z1, z2) ∈ [−1,+1]n+1}

to eliminate the error terms e at the expense of introducing
a new variable. Conversely, we can reduce the number of
variables (at the expense of increasing the error terms)
since{∑

α cαz
α ± e | z ∈ [−1,+1]n

}
⊂

{∑
αn=0 cαz

α ±
∑
uαn>0|cα|+ue | z ∈ [−1,+1]n−1

}
.

If enclosure sets become ill-conditioned or have too many
parameters, then reconditioning can help control the size
of the polynomial and the errors. We have implemented
the reduction process of Lohner [1987] for affine enclosures
without constraints. If A = QDR with Q orthogonal, D
diagonal and ||R ||∞≤ 1, then

{Az + b | z ∈ [−1,+1]n} ⊂ {QDz + b | z ∈ [−1,+1]m}.

If enclosure sets become too big, then splitting is needed
to avoid blow-up of errors. The simplest way of splitting
is to subdivide the parameter domain along one of its
coordinate axes:

Si = f (Di ∩ g−1(C )) for i = 1, 2 with D = D1 ∪D2.



In Ariadne, the splitting coordinate for the purpose of
evolution is chosen to reduce the sizes of the bounding
boxes of the sets. Splitting also has the beneficial effect of
decreasing the coefficients of the scaled polynomial models,
and may result in redundant constraints which can be
removed from the representation.

6.3 Future improvements

The current implementation of the evolution routines in
Ariadne provides a complete functionality for computing
the evolution of hybrid systems, but there are many areas
with potential improvements to the accuracy or efficiency
of the calculations.

To simplify constraint propagation and event scheduling,
and reduce ill-conditioning of the functions defining the
enclosures, it may be more efficient to explicitly consider
intermediate variables in the description of the evolved
sets. For example, by writing enclosure sets as

{yf | (x0, t1, y1, x1) ∈ D

| y1 = ϕ0(x0, t1) ∧ g1(y1) = 0

∧ x1 = r1(y1) ∧ yf = ϕ1(x1, tf − t1)},
where x1 and y1 represent the states immediately before
and immediately after the occurrence of some discrete
event e1, rather than

{ϕ1(r1(ϕ0(x0, t1)), tf − t1) | (x0, t1) ∈ X0 × [0, tf ]

| g1(ϕ0(x0, t1))}.

Since the error of computing the flow ϕ(x , t) over D×[0, th ]
depends mostly on the bounding box for the range, where
fairly large step sizes are used, it may be more efficient
to precompute the flow over a larger domain, rather than
compute the flow for each step. Similar techniques have
been used in [Dang et al., 2009]. Here, the main problem to
solve is how to find a good balance between using a small
domain which allows higher accuracy for a lower order,
and a large domain which requires fewer computations of
the flow.

Furthermore, the accuracy of the computation of the flow
may be improved by using a paralleletope rather than a
box to bound the flow step, as this will yield a tighter
bound. To support this, we are considering allowing a
general invertible affine map for the scaling of a polynomial

function model, f̂ (x ) = p(A−1(x − c))± e.

Finally, since the reconditioning procedure for affine enclo-
sures cannot be applied directly to nonlinear enclosures or
enclosures with constraints, work is in progress to find re-
conditioning techniques which do work in these situations.

7. EXAMPLE—WATER TANK SYSTEM

In this example, the water height h in a tank with continu-
ous outflow and a valve-restricted inflow (see Fig. 4) needs
to be controlled between hmin and hmax. By Torricelli’s
law, the rate-of-change h is given by

ḣ = −a
√
h + bα (1)

where α ∈ [0, 1] is the aperture of the inlet valve, a and b
are two constants whose value depends on some physical
quantities of the system. The valve can be opened or closed
at a speed of 1/T and it is controlled so that it starts to

V

α

hmax

hmin

Fig. 4. A water tank with input controlled by a valve.

open as soon as h ≤ hopen and starts to close as soon as
h ≥ hclose. Fig. 5 shows the hybrid automaton modeling
the water tank.

open

ḣ = −a
√
h+ b

α = 1

h ≤ hclose

closing

ḣ = −a
√
h+ bα

α̇ = −1/T
α ≥ 0

closed

ḣ = −a
√
h

α = 0

h ≥ hopen

opening

ḣ = −a
√
h+ bα

α̇ = 1/T
α ≤ 1

h ≥ hclose

α ≤ 0

h ≤ hopen

α ≥ 1

Fig. 5. The watertank automaton.

At the beginning the automaton is in location opening,
the value of α increases with speed 1/T and the water
level follows equation (1). As soon as α = 1 (the valve
is fully open) the urgent transition to open is taken. The
valve is kept open until h = hclose, when the automaton
switches to location closing and the valve starts closing
with speed −1/T . The urgent transition to closed is
activated when α = 0, and the water level decreases
following the dynamics ḣ = −a

√
h until h = hopen and

the transition to opening is taken.

A computation of the finite-time reachable set of one evo-
lution loop starting from {(opening, 0, 0)} using Ariadne
is shown in Fig. 6.

Fig. 6. Evolution of the watertank example

The computed set is a rigorous and accurate over-
approximation of the mathematically exact reachable set.

8. COMPARISON WITH OTHER TOOLS

Most other tools for performing reachability analysis of
hybrid systems use the same basic framework as Ariadne



i.e. enclosure sets are propagated under the evolution
of the flow. However, not all tools have the ability to
handle nonlinear systems or compute infinite-time chain-
reachable sets. Ariadne has the ability both to accurately
compute long evolution traces or perform discretisations
after relatively short time steps, and distinguishes between
lower-semantics for proving existence of trajectories, and
upper-semantics for proving non-existence, which have
different computability properties.

Phaver [Frehse, 2008] uses zonotopes as enclosures, can
only handle piecewise-affine-derivative systems and affine
guards. Termination of an infinite-time reachability com-
putation is performed by testing if no new enclosures are
generated. d/dt [Asarin et al., 2002] is a tool for affine
systems with affine guards, and uses polytopes as its en-
closures. HyperTech [Henzinger et al., 2000] uses boxes
as enclosures, and can compute the solution of differen-
tial inclusions with small noise terms. SpaceEx [Frehse
et al., 2011] combines polyhedra and support function
representations of the state space, and guarantees local
error bounds on the computation of systems with piecewise
affine dynamics and guards. Checkmate [Clarke et al.,
2003] can handle nonlinear dynamics, but only affine guard
sets. HSOLVER [Ratschan and She, 2007] can handle non-
linear hybrid systems, but can only prove safety properties.

Methods of [Kurzhanski and Varaiya, 2002a,b] use ellip-
soids as enclosures, but cannot perform infinite-time reach-
ability analysis. The level-set toolbox of [Tomlin et al.,
2003] can be used for reachability analysis. It uses a global
representation in terms of the frontier of the reached re-
gion, which can suffer from singularities occurring on the
boundary during the computation.

Other software for rigorous numerics includes VNODE
[Nedialkov et al., 1999] and ADIODES [Stauning, 1997] for
computing the solution of ordinary differential equations,
COSY INFINITY [Makino and Berz, 2006] for Taylor
models and differential equations, the CAPD-Library [M.
Mrozek et al., 2007] for analysis of nonlinear dynamic
systems, GAIO [Dellnitz et al., 2001] for global analysis
of dynamic systems, and QUIMPER [Chabert and Jaulin,
2009] for constraint propagation.

9. CONCLUDING REMARKS

Ariadne is a software tool for reachability analysis of non-
linear hybrid systems based on a rigorous numerical cal-
culus for manipulating functions and sets. The combined
functionality allows rigorous and accurate computation of
the evolution of nonlinear hybrid systems.

The functional calculus includes support for interval arith-
metic, linear algebra, automatic differentiation, function
models with evaluation and composition, solution of al-
gebraic and differential equations, constraint propagation
and nonlinear programming. Although there are software
packages supporting each of these functionalities individ-
ually, Ariadne is the first open-source package providing
integrated support for all this functionality. Additionally,
due to the modular structure, additional function and set
types can be introduced, and different implementations of
the algorithms provided. Indeed, the software can be seen
as a general-purpose tool for verified numerics.

Work in the immediate future will focus on further im-
provements to the efficiency and accuracy of the tool. Par-
tially implemented future extensions include evolution of
nondeterministic hybrid systems described by differential
inclusions [Z̆ivanović and Collins, 2010] and verification of
linear temporal logic formulae [Collins and Zapreev, 2009].
Theoretical work is in progress on the evolution of stiff con-
tinuous dynamics, the analysis of stochastic systems and
dynamical games, the computation of optimal controllers,
system reduction, including time-scale decomposition and
assume-guarantee reasoning.
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