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A Platform-Based Design Methodology
with Contracts and Related Tools for

the Design of Cyber-Physical Systems
Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti, Tiziano Villa

Abstract—We introduce a platform-based design methodology
that uses contracts to specify and abstract the components of
a cyber-physical system (CPS), and provide formal support to
the entire CPS design flow. The design is carried out as a
sequence of refinement steps from a high-level specification to
an implementation built out of a library of components at the
lower level. We review formalisms and tools that can be used
to specify, analyze or synthesize the design at different levels
of abstractions. For each level, we highlight how the contract
operations can be concretely computed as well as the research
challenges that should be faced to fully implement them. We
illustrate our approach on the design of embedded controllers
for aircraft electric power distribution systems.

I. INTRODUCTION

ALARGE number of new IT applications are emerging,
which go beyond the traditional boundaries between

computation, communication and control. The majority of
these applications, such as “smart” buildings, “smart” traffic,
“smart” grids, “smart” cities, cyber security, and health-care
wearables, build on distributed, networked sense-and-control
platforms, characterized by the tight integration of “cyber”
aspects (computing and networking) with “physical” ones
(e.g., mechanical, electrical, and chemical processes). In these
cyber-physical systems (CPS) [1], [2], [3] networks monitor
and control the physical processes, usually with feedback loops
where physics affects computation and vice versa.

Intelligent systems that gather, process and apply infor-
mation are changing the way entire industries operate, and
have the potential to radically influence how we deal with
a broad range of crucial societal problems. As embedded
digital electronics becomes pervasive and cost-effective, co-
design of both the cyber and the physical portions of these
systems shows promise of making the holistic system more
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capable and efficient. However, CPS complexity and hetero-
geneity, originating from combining what in the past have been
separate worlds, tend to substantially increase the design and
verification challenges.

A serious obstacle to the efficient realization of CPS is
the inability to rigorously model the interactions among het-
erogeneous components and between the physical and the
cyber sides. CPS design entails the convergence of several
sub-disciplines, and tends to stress all existing modeling
languages and frameworks, which are hardly interoperable
today. While in computer science logic is emphasized rather
than dynamics, and processes follow a sequential semantics,
physical processes are generally represented using continuous-
time dynamical models, often expressed as differential equa-
tions, which are acausal, concurrent models. It is therefore
difficult to accurately capture the interactions between these
two worlds. Moreover, a severe limitation in common design
practice is the lack of formal specifications. Requirements are
written in languages that are not suitable for mathematical
analysis and verification. Assessing system correctness is then
left for simulation and, later in the design process, prototyping.
Thus, the traditional heuristic design process based on informal
requirement capture and designers’ experience can lead to
implementations that are inefficient and sometimes do not even
satisfy the requirements, yielding long re-design cycles, cost
overruns and unacceptable delays.

The cost of being late to market or of product malfunc-
tioning is staggering as witnessed by the recent recalls and
delivery delays that system industries had to bear. Toyota’s
infamous recall of approximately 9 million vehicles due to the
sticky accelerator problem1, Boeing’s 787 delay bringing an
approximate toll of $3.3 billion2 are examples of devastating
effects that design problems may cause. If this is the present
situation, the problem of designing planetary-scale CPS ap-
pears insurmountable unless bold steps are taken to bridge the
gap between system science and system engineering.

Several languages and tools have been proposed over the
years to overcome the limitations above and enable model-
based development of CPS. However, an all-encompassing
framework for CPS design that helps interconnect different
tools, possibly operating on different system representations,
is still missing [3]. By reflecting on the history of achievements
of electronic design automation in taming the design complex-

1see e.g., http://www.autorecalls.us
2see, e.g., http://en.wikipedia.org/wiki/Boeing 787



PROCEEDINGS OF IEEE 2

ity of VLSI systems, we advocate that CPS design automation
efforts are doomed to be impractical and poorly scalable,
unless they are framed in structured design methodologies
and in a formalization of the design process in a hierarchical
and compositional way. Hierarchy has been instrumental to
scalable VLSI design, where boosts in productivity have
always been associated with a rise in the level of abstraction of
design capture, from transistor to register transfer level (RTL),
to systems-on-chip. On the other hand, designers typically
assemble large and complex systems from smaller and simpler
components, such as pre-designed intellectual property (IP)
blocks. Therefore, compositional approaches offer a “natural”
perspective that should inform the whole design process,
starting from its earlier stages.

In this paper, we present a path towards an integrated
framework for CPS design; the pillars for the framework
are a methodology that relies on the platform-based design
paradigm (PBD) [4] and the algebra of contracts to formalize
the design process and enable the realization of systems
in a hierarchical and compositional manner. Contracts are
mathematical abstractions, explicitly defining the assumptions
of each component on its environment and the guarantees
of the component under these assumptions. The design is
carried out as a sequence of refinement steps from a high-
level specification to an implementation built out of a library
of components at the lower level. The high-level specification
is first formalized in terms of contracts to enable requirement
validation and early detection of inconsistencies. Then, at each
step, contracts are refined by combining synthesis, optimiza-
tion and simulation-based design space exploration methods.

We review formalisms and tools that can be used to specify,
analyze or synthesize the design at different levels of ab-
stractions, from the level of discrete systems (e.g. captured
using linear temporal logic), to the one of hybrid systems,
(e.g. captured using signal temporal logic or networks of
hybrid automata). For each formalism, we highlight how the
contract operators can be computed, and expose the main
research challenges for their implementation. We conclude
by illustrating our approach on the design of embedded
controllers for aircraft electric power distribution systems.

II. PLATFORM-BASED DESIGN WITH CONTRACTS
FOR CYBER-PHYSICAL SYSTEMS

We consider in this paper a particular case of CPS that
incorporates most, if not all, of the features of general CPSs,
to help explain the methodology: a control system, composed
of a physical plant, including sensors and actuators, and an
embedded controller. The controller runs a control algorithm
to restrict the behaviors of the plant so that all the remaining
(closed-loop) behaviors satisfy a set of system requirements.
Specifically, we consider reactive controllers, i.e. controllers
that maintain an ongoing relation with their environment
by appropriately reacting to it. Our goal is to design the
system architecture, i.e. the interconnection among system
components, and the control algorithm, to satisfy the set of
high-level requirements.

As shown in Fig. 1 (a), the design methodology consists
of two main steps, namely, system architecture design and

control design. The system architecture design step instantiates
system components and interconnections among them to gen-
erate an optimal architecture while guaranteeing the desired
performance, safety and reliability. Typically, this design step
includes the definition of both the embedded system and the
plant architectures. The embedded system architecture consists
of software, hardware, and communication components, while
the plant architecture depends on the physical system under
control, and may consist of mechanical, electrical, hydraulic
or thermal components. Sensors and actuators reside at the
boundary between the embedded system and the plant [5].
Given an architecture, the control design step includes the
exploration of the control algorithm and its deployment on
the embedded platform.

The above two steps are however connected. The correctness
of the controller needs to be enforced in conjunction with
the assumptions on the plant. Similarly, performance and
reliability of an architecture should be assessed for the plant
in closed loop with the controller.

At the highest level of abstraction, the starting point is
a set of requirements, predominantly written in text-based
languages that are not suitable for mathematical analysis and
verification. The result is a model of both the architecture
and the control algorithms to be further refined in subsequent
design stages. We place this process in the form of Platform-
Based Design and we use extensively contracts to verify the
design and to build refinements that are correct by construc-
tion.

A. Platform-Based Design

In PBD, at each step, top-down refinements of high-level
specifications are mapped onto bottom-up abstractions and
characterizations of potential implementations. Each abstrac-
tion layer is defined by a design platform, which is the set of
all architectures that can be built out of a library (collection)
of components according to composition rules. In the top-
down phase of each design step, we formalize the high-
level system requirements and we perform an optimization
(refinement) phase called mapping, where the requirements are
mapped onto the available implementation library components
and their composition. Mapping is cast as an optimization
problem, where a set of performance metrics and quality
factors are optimized over a space constrained by both system
requirements and component feasibility constraints. Mapping
is the mechanism that allows to move from a level of
abstraction to a lower one using the available components
within the library. Note that when some constraint cannot be
satisfied using the available library components or the mapping
result is not satisfactory for the designer, additional elements
can be designed and inserted into the library. For example,
when implementing an algorithm with code running on a
processor, we are assigning the functionality of the algorithm
to a processor and the code is the result of mapping the
“equations” describing the algorithm into the instruction set
of the processor. If the processor is too slow, then real-time
constraints may be violated. In this case, a new processor has
to be found or designed that executes the code fast enough
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to satisfy the real-time constraint. In the mapping phase,
we consider different viewpoints (aspects, concerns) of the
system (e.g. functional, reliability, safety, timing) and of the
components. In the bottom-up phase, we build and model the
component library (including both plant and controller).

If the design process is carried out as a sequence of refine-
ment steps from the most abstract representation of the design
platform (top-level requirements) to its most concrete repre-
sentation (physical implementation), providing guarantees on
the correctness of each step becomes essential. Specifically,
we seek mechanisms to formally prove that: (i) a set of
requirements are consistent, i.e. there exists an implementation
satisfying all of them; (ii) an aggregation of components are
compatible, i.e. there exists an environment in which they can
correctly operate; (iii) an aggregation of components refines
a specification, i.e. it implements the specification and is
able to operate in any environment admitted by it. Moreover,
whenever possible, we require the above proofs to be per-
formed automatically and efficiently, to tackle the complexity
of today’s CPS. Therefore, to formalize the above design
concepts, and enable the realization of system architectures
and control algorithms in a hierarchical and compositional
manner that satisfies the constraints and optimizes the cost
function(s), we resort to contracts.

B. Contracts: An Overview

The notion of contracts originates in the context of compo-
sitional assume-guarantee reasoning [6], which has been used
for a long time, mostly for software verification. In a contract
framework, design and verification complexity is reduced by
decomposing system-level tasks into more manageable sub-
problems at the component level, under a set of assumptions.
System properties can then be inferred or proved based on
component properties. Rigorous contract theories have been
developed over the years, including assume-guarantee (A/G)
contracts [7] and interface theories [8]. However, their concrete
adoption in CPS design is still in its infancy, a major challenge
being the absence of a comprehensive modeling formalism for
CPS, due to their complexity and heterogeneity [9], [10].

In this paper, we adopt the assume-guarantee (A/G) contract
framework, as introduced by Benveniste, et al. [7], [10] to
reason about requirements and their refinement during the
design process. Because of the explicit distinction between
component and environment, A/G contracts are deemed as a
rigorous yet intuitive framework, which directly conforms to
the thought process of a designer, aiming to guarantee certain
performance figures for the design under specific assumptions
on its environment. An integration language incorporating
A/G contracts to formalize system requirements and enable
the generation of simulation monitors has been proposed
within the META research program [11], with the aim to
compress the product development and deployment timeline
of defense systems. Furthermore, over the last few years,
many publications have demonstrated the application of A/G
contracts in different domains, such as automotive [12], [10],
analog integrated systems [5] and, more recently, synthesis and
verification of control algorithms for CPS [13], [14].

Since A/G contracts are centered around behaviors, they
are expressive and versatile enough to encompass all kinds of
models encountered in system design, from hardware and soft-
ware models to representations of physical phenomena [10],
[15]. The particular structure of the behaviors is defined by
specific instances of the contract model. This will only affect
the way operators in the contract algebra are implemented,
since the basic definitions will not vary.

In the sequel, before describing the steps of our methodol-
ogy, we detail the notions of components and contracts.

C. Components and Contracts

Since PBD is based on the composition of components
while refining the design, we start our analysis with a formal
representation of a component and we associate to it a set
of properties that the component satisfies expressed with
contracts. The contracts will be used to verify the correctness
of the composition and of the refinements.

A component M can be seen as an abstraction represent-
ing an element of a design, characterized by the following
attributes:
• a set of input u ∈ U , output y ∈ Y and internal
x ∈ X variables (including state variables); a set of
configuration parameters κ ∈ K, and a set of input,
output and bidirectional ports λ ∈ L. Components can
be connected together by sharing certain ports under
constraints on the values of certain variables. In what
follows, to simplify, we use the same term variables to
denote both component variables and ports;

• a set of behaviors, which can be implicitly represented by
a dynamic behavioral model F(u, y, x, κ) = 0, uniquely
determining the values of the output and internal variables
given the values of the input variables and configuration
parameters. Components can respond to every possible
sequence of input variables, i.e. they are receptive to
their input variables. Behaviors are generic and could be
continuous functions that result from solving differential
equations, or sequences of values or events recognized by
an automata model. In the following, to simplify, we also
use M to denote the set of behaviors of a component;

• a set of non-functional models, i.e. maps that allow
computing non-functional attributes of a component, cor-
responding to particular valuations of its input vari-
ables and configuration parameters. Examples of non-
functional maps include the performance model P(.) = 0,
computing a set of performance figures (e.g. bandwidth,
latency) by solving a behavioral model, or the reliability
model R(.) = 0, providing the failure probability of a
component.

Components can be hierarchically organized to represent the
system at different levels of abstraction. A system can then
be assembled by parallel composition and interconnection of
components at level l, and represented as a new component
at level l + 1. At each level of abstraction, components are
also capable of exposing multiple, complementary viewpoints,
associated with different design concerns (e.g. safety, perfor-
mance, reliability) and with models that can be expressed via
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different formalisms, and analyzed by different tools. Finally,
a component M may be associated with a contract, offering a
specification for it, as further detailed below.

To simplify, in the sequel, we always refer to components
with a fixed configuration, i.e. components in which the
configuration parameters κ are fixed. Then, a contract C for
a component M is a triple (V,A,G), where V = {u, y, x} is
the set of component variables, and A and G are assertions,
each representing a set of behaviors over V [7]. A represents
the assumptions that M makes on its environment, and G rep-
resents the guarantees provided by M under the environment
assumptions.

A component M satisfies a contract C whenever M and
C are defined over the same set of variables, and all the
behaviors of M satisfy the guarantees of C in the context
of the assumptions, i.e. when M ∩ A ⊆ G. We denote this
satisfaction relation by writing M |= C, and we say that M
is an implementation of C. However, a component E can also
be associated to a contract C as an environment. We say that
E is a legal environment of C, and write E |=E C, whenever
E and C have the same variables and E ⊆ A.

Two contracts C and C′ with identical variables, identical
assumptions, and such that G′ ∪ A = G ∪ A, where A is
the complement of A, possess identical sets of environments
and implementations. Such two contracts are then equivalent.
In particular, any contract C is equivalent to a contract in
saturated form C′, obtained by taking G′ = G∪A. Therefore,
in what follows, we assume that all contracts are in saturated
form.

1) Composition: Contracts associated to different compo-
nents can be combined according to different rules. Similar to
parallel composition of components, parallel composition (⊗)
of contracts can be used to construct composite contracts out
of simpler ones. Let C1 = (V,A1, G1) and C2 = (V,A2, G2)
be contracts (in saturated form) over the same set of variables
V . The composite contract C1 ⊗ C2 is defined as the triple
(V,A,G) where:

A = (A1 ∩A2) ∪ (G1 ∩G2) (1)
G = G1 ∩G2. (2)

The composite contract must satisfy the guarantees of both,
which explains the operation of intersection in (2) [10]. Intu-
itively, the assumptions of the composite contract should also
be the conjunction of the assumptions of each contract, since
the environment should satisfy all the assumptions. However,
in general, part of the assumptions A1 will be already satisfied
by composing C1 with C2, acting as a partial environment for
C1. Therefore, G2 can contribute to relaxing the assumptions
A1, and vice versa.

As an example, let us consider a simple producer-consumer
system, where the producer M1 is interconnected in series
with the consumer M2, sharing the variable y ∈ R. Let
C1 = ({y},T, y > 0) and C2 = ({y}, y > 0,T) be the two
contracts specifying the behaviors of M1 and M2, respectively,
both in saturated form. In this example, both assumptions
and guarantees are expressed as predicates on y, and T is
the Boolean value True. M1 guarantees that y is a positive

number, which coincides with the assumption made by M2

on its environment. Then, by applying (1) and (2), we obtain
G = (y > 0) and A = (y > 0) ∨ (y ≤ 0) = T,
denoting that the composite system is able to operate in any
environment, which is intuitive, since the assumptions of M2

on its environment are relaxed by the guarantees of M1.
Specifically, when computing (1), we are interested in the

maximum set of behaviors A such that A ∩ G2 ⊆ A1 and
A ∩ G1 ⊆ A2, where “maximum” refers to the order of sets
by inclusion [10]. This is equivalent to finding:

A = max{A′|A′ ⊆ A1 ∪G2, A
′ ⊆ A2 ∪G1}

= (A1 ∪G2) ∩ (A2 ∪G1)

= (A1 ∩A2) ∪ (A1 ∩G1) ∪ (A2 ∩G2) ∪ (G1 ∩G2)

= (A1 ∩A2) ∪G1 ∪G2,

(3)

which reduces to (1). The last equality in (3) stems from the
fact that G = G ∪ A holds for a contract C = (V,A,G) in
saturated form. Contract composition preserves saturated form,
that is, if C1 and C2 are in saturated form, then so is C1 ⊗C2.
Moreover, ⊗ is associative and commutative and generalizes
to an arbitrary number of contracts. We therefore can write
C1 ⊗ C2 ⊗ · · · ⊗ Cn.

For composition to be defined, contracts need to be over the
same set of variables V . If this is not the case, then, before
composing the contracts, we must first extend their behaviors
to a common set of variables using an inverse projection
type of transformation, which we call alphabet equalization.
Formally, let C = (V,A,G) be a contract and let V ′ ⊇ V
be the set of variables on which we want to extend C. The
extension of C on V ′ is the new contract C′ = (V ′, A′, G′)
where A′ and G′ are sets of behaviors over V ′, defined by
inverse projection of A and G, respectively. In the sequel,
we freely compose contracts C1 and C2 over arbitrary sets of
variables V1, V2, by implicitly first taking their extensions to
V = V1 ∪ V2.

2) Compatibility and Consistency: C is compatible if there
exists a legal environment E for it, i.e. if and only if A 6= ∅.
The intent is that a component satisfying contract C can
only be used in the context of a compatible environment.
Similarly, a contract is consistent when the set of implemen-
tations satisfying it is not empty, i.e. it is feasible to develop
implementations for it. For contracts in saturated form, this
amounts to verify that G 6= ∅. The definitions above can be
lifted to pairs of contracts, so that C1 and C2 are compatible
(consistent) if and only if C1 ⊗ C2 is compatible (consistent).

3) Refinement: Refinement is a preorder on contracts,
which formalizes a notion of substitutability. We say that C
refines C′, written C � C′ (with C and C′ both in saturated
form), if and only if A ⊇ A′ and G ⊆ G′. Refinement amounts
to relaxing assumptions and reinforcing guarantees, therefore
strengthening the contract. Clearly, if M |= C and C � C′,
then M |= C′. On the other hand, if E |=E C′, then E |=E C.
We can then replace C′ with C.

Alphabet equalization is also needed as a preliminary step
to define refinement when C and C′ are defined over a different
alphabet. A more general case of refinement occurs when
C and C′ are also expressed by using different formalisms
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(heterogeneous refinement). In this case, before the refinement
relation can be defined, we need to map the behaviors ex-
pressed by one of the contracts to the domain of the other
contract via a transformation M (e.g. a type of projection
or inverse projection) which is generally more involved than
alphabet equalization.

4) Conjunction: To compose multiple requirements on the
same component, possibly representing different viewpoints
that need to be satisfied simultaneously, we can also define
the conjunction (∧) of contracts. Let C1 = (V,A1, G1) and
C2 = (V,A2, G2) be contracts (in saturated form) over the
same set of variables V and on the same component M . We
would like to combine C1 and C2 into a joint contract C1 ∧C2
so that, if M |= C1 ∧ C2, then M |= C1 and M |= C2. We
can compute the conjunction of C1 and C2 by taking their
greatest lower bound with respect to the refinement relation,
i.e. (i) C1 ∧C2 is guaranteed to refine both C1 and C2, and (ii)
for any contract C′ such that C′ � C1 and C′ � C2, we have
C′ � C1∧C2. For contracts in saturated form and on the same
alphabet, we have

C1 ∧ C2 = (A1 ∪A2, G1 ∩G2). (4)

Another form for A/G contracts has also been proposed,
which supports reasoning about complex component interac-
tions by avoiding using parallel composition of contracts to
overcome the problems that certain models have with the ef-
fective computation of the operators [16]. Instead, composition
is replaced with the concept of circular reasoning [17]: when
circular reasoning is sound, it is possible to check relations
between composite contracts based on their components only,
without taking expensive compositions. However, the notions
of compatibility and conjunction, as described above, are not
addressed in this theory.

5) Horizontal and Vertical Contracts: Traditionally con-
tracts have been used to specify components, and aggregation
of components at the same level of abstraction; for this reason
we refer to them as horizontal contracts.

We use contracts also to formalize and reason about re-
finement between two different abstraction levels in the PBD
process [5], [10]; for this reason, we refer to this type of
contracts as vertical contracts. To exemplify this concept,
consider the problem of mapping a specification platform of a
system at level l+1 onto an implementation platform at level
l. In general, the specification platform architecture (i.e. inter-
connection of components) may be defined in an independent
way, and does not directly match the implementation platform
architecture. In particular, let C =

⊗
i∈I
(∧

k∈Ki
Cik
)

and

M =
⊗

j∈J

(∧
l∈Lj
Mjl

)
be two contracts respectively

describing the specification and implementation platforms. In
this example, we have defined C and M out of a composition
of I and J components, respectively. The contract for each
component is then defined out of a conjunction of simpler
contracts. Since the components ofM and C may not directly
match, checking that M � C in a compositional way, by
reasoning on the components ofM and C independently, may
not be effective.

However, it is still possible to model the mapping of
the specification over the implementation by the composition

C ⊗ M. This composition captures the fact that the actual
satisfaction of all the design requirements and viewpoints by
a deployment depends on the supporting execution platform
and on the way system functionalities are mapped to it. In
the composition, assumptions made from the specification
platform on the implementation platform get discharged by the
guarantees of the implementation platform, and vice versa, as
indicated by (1) and (2). Refinement can then be checked by
checking instead that C ⊗M � C, which can be performed
compositionally, by directly matching the components of C
with the ones of C ⊗M. The composite contract C ⊗M is a
vertical contract, used to formalize mechanisms for mapping
a specification over an execution platform, such as the ones
adopted in the METROPOLIS [18], METROII [19], and, more
recently, the METRONOMY frameworks [20].

III. REQUIREMENT FORMALIZATION AND VALIDATION
USING CONTRACTS

We use contracts to formalize top-level requirements, allo-
cate them to lower-level components, and analyze them for
early validation of design constraints. Requirement analysis
can often be challenging, because of the lack of familiarity
with formal languages among system engineers. Moreover,
it is significantly different from traditional formal verifica-
tion, where a system model is compared against a set of
requirements. Since there is not yet a system at this stage,
requirements themselves are the only entity under analysis. By
formalizing requirements as contracts, it is instead possible to
provide effective tests to check for requirement consistency,
i.e. whether a set of contracts is realizable, or whether, in
contrast, facets of these are inherently conflicting, and thus
no implementation is feasible. Moreover, it is possible to
exclude undesired behaviors, e.g. by adding more contracts, by
strengthening assumptions, or by considering additional cases
for guarantees. Since contracts are abstractions of components,
their concrete representations are typically more compact than
a fully specified design [14]. The above tests can then be
performed more efficiently than traditional verification tasks.

A framework for requirement engineering has been recently
developed by leveraging modal interfaces, an automata-based
formalism, as the underlying specification theory [10]. How-
ever, to retain a correspondence between informal require-
ments and formal statements, declarative, “property-based”
approaches using some temporal logic are gaining increasing
interest. They contrast imperative, “model-based” approaches,
which tend to be impractical for high-level requirement valida-
tion. In fact, constructing a model to capture all the behaviors
allowed by the requirements often entails considering all
possible combinations of system variables. Moreover, these
models are usually hard to parametrize, small changes in the
requirements become soon hard to map into changes in the
corresponding models.

In this paper, we follow an approach based on A/G con-
tracts as introduced in Section II-B, which allows specifying
different kinds of requirements using different formalisms,
following both the declarative and imperative styles, to reflect
the different viewpoints and domains in a heterogeneous
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Fig. 1. (a) Structure of the proposed contract-based methodology for CPS design, from top-level requirements to the definition of system architecture and
control algorithm. Demonstration of the different design steps on the aircraft electric power system example in Section VI [13]: (b) requirement formalization;
(c) plant architecture selection; (d) reactive control synthesis; (e) simulation-based verification; (f) simulation-based design exploration; (g) hybrid power
system model in SIMULINK for further refinement.

system, as well as the different levels of abstraction in the
design flow. As shown in Fig. 1 (a), to facilitate reasoning
at the level of abstraction of requirement engineers, a viable
strategy is to drive engineers towards capturing requirements
in a structured form, using a set of predefined high-level
primitives, or patterns, from which formal specifications can
be automatically generated. This approach is similar to the
one advocated within the European projects SPEEDS and
CESAR [12], linked to automata-based formalisms, or to the
higher-level domain-specific language (DSL) proposed in [13],
and further exemplified in Section VI.

From a set of high-level primitives, different kinds of
contracts can be generated. When specifying the system ar-
chitecture, steady-state (static) requirements, interconnection
rules, component dimensions can be captured by static con-
tracts, expressed via arithmetic constraints on Boolean and
real variables to model, respectively, discrete and continuous
design choices. Then, compatibility, consistency and refine-
ment checking translate into checking feasibility of conjunc-
tions or disjunction of constraints, which can be solved via
queries to Satisfiability-Modulo-Theories (SMT) solvers [21],
[22] or mathematical optimization software, such as mixed
integer-linear, mixed integer-semidefinite-positive, or mixed
integer/non-linear program solvers.

When specifying the control algorithm, representing dy-
namic behaviors becomes the main concern; safety and real-
time requirements can then be captured by contracts expressed

using temporal logic constructs. In particular, linear temporal
logic (LTL) [23] can be used to reason about the temporal
behaviors of systems characterized by Boolean, discrete-time
signals or sequences of events (discrete event abstraction in
Fig. 1a).

Signal temporal logic (STL) [24] can deal with dense-time
real signals and continuous dynamical models (continuous
abstraction in Fig. 1a). Sometimes, discrete and continuous
dynamics are so tightly connected, that a discrete-event (DE)
abstraction would result inaccurate, while a continuous ab-
straction would turn out to be inefficient, thus calling for
a hybrid system abstraction, mixing discrete and continuous
behaviors, such as Hybrid Linear Temporal Logic with Regular
Expressions (HRELTL) [25] and hybrid automata [26]. In the
sequel, we review the main formalisms for the specification of
dynamical systems, and the related tools, which can be used to
implement the algebra of contracts and perform requirement
analysis within our framework.

A. Temporal Logic

Temporal logic is a symbolism for representing and reason-
ing about the evolution of a system over time. Starting from
the ‘80s it has been successfully applied in formal verification,
and a flourishing family of temporal logics has been developed
both by academy and industry. Because of its “declarative”
flavor, temporal logic seems a “natural” language to formalize
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high-level requirements in terms of contracts. Moreover, espe-
cially for discrete-time, discrete-state system representations,
the wealth of results and tools in temporal logic and model
checking can provide a substantial technological basis for
requirement analysis [6].

Classical discrete-time temporal logics like LTL and com-
putation tree logic (CTL) [6], originally developed to state
requirements of hardware and software electronic systems,
can indeed be effectively used to describe the DE abstrac-
tion of CPS. As an example, in the abstraction offered by
LTL, a component can be represented as a set of boolean
variables SDE . Then, the behaviors of a component can be
described by the infinite sequences of states of the form
σ = s0s1s2 . . . satisfying an LTL formula, each state s
being a valuation of the boolean variables in SDE . A sample
requirement expressible by LTL is the property “An alert
must be eventually resolved”, which can be formalized by the
formula �(alert → 3 sys ok), where alert and sys ok are
Boolean component variables. This formula states that every
occurrence of the alert event (i.e. when alert is asserted), as
denoted by the always (�) operator, must eventually (3) be
followed by an occurrence of a sys ok event.

Discrete-time temporal logics lack the expressiveness
needed to capture the continuous aspects of the system in
a faithful way. To overcome this limitation, temporal logics
have been extended in many ways. A first extension consists
in adding operators to express timing constraints between
discrete events. This leads to the development of real-time
temporal logics such as Metric Temporal Logic (MTL) [27].
For instance, real-time temporal logics can express properties
like “An alert must be resolved in 10 seconds”, by means of
the MTL formula �(alert → 3[0,10] sys ok), which forces
the sys ok event to occur at most 10 time units after the
alert event.

Real-time temporal logics have been further extended by
providing a continuous notion of time, and by making them
capable of expressing properties of continuous quantities. The
most relevant language in this family of continuous-signal
logics is STL [24], which is able to express properties like
“If the temperature reaches 90 degrees then it must eventually
decrease below 60”. Such a property can be formalized by the
formula �(t ≥ 90 → 3 t < 60), which constrains any time
instant where the temperature t is greater or equal to 90 to be
followed by a time instant where the temperature is below 60.

More recently, some logics for hybrid-systems have been
introduced, which can express properties of both the discrete
and continuous behaviors of a system. Two relevant members
of this class are HRELTL [25], which extends the LTL with
regular expressions (RE), and Differential Dynamic Logic
(dL) [28], which can specify correctness properties for hybrid
systems given operationally as hybrid programs. An example
of a hybrid property is “If the temperature reaches 90 then
an alert is raised”, which can be formalized by the HRELTL
formula �(t ≥ 90→ # alert), where # is the “next discrete
event” operator. On the other hand, the hybrid property “for the
state of a train controller train, the property z ≤ 100 always
holds true when starting in a state where v2 ≤ 10 is true”, can
be expressed by the dL formula v2 ≤ 10 → [train]z ≤ 100,

where z and v are the position and the velocity of the train,
respectively.

Temporal Logic and Contracts: Consistent with the repre-
sentation of component behaviors, both assumptions A and
guarantees G of a contract C can be specified as temporal
logic formulas [15]. In this case, a component M satisfies
the contract C if it satisfies the logical implication A → G,
while it is a legal environment for C if it satisfies the formula
A. Contract satisfaction can thus be reduced to two specific
instances of model checking [6]. Composition and conjunction
of contracts C1 and C2 can be represented by appropriate
Boolean combination of the formulas A1, A2, G1 and G2.
Other operations on contracts, as defined in Section II-C, can
be reduced to special instances of the validity or satisfiability
checking problem for temporal logic as follows:
• In its simplest formulation, compatibility and consistency

can be checked by testing whether A or G are satisfiable.
More complex instances of the problem, which rule out
contracts that are “trivially” compatible or consistent, can
be solved by vacuity checking [29];

• Refinement is an instance of validity checking: C1 � C2 if
and only if A1 → A2 and G2 → G1 are valid formulas
(i.e., tautologies for the language).

A solution of the above problems for HRELTL, based on SMT
techniques can be found in [25].

B. Hybrid Automata

Formalisms following an imperative style, such as hybrid
automata, can be used to specify functional requirements espe-
cially for system portions of limited complexity. For example,
describing the intended behavior of a controlled continuous
system together with its discrete controller. Then, one can
verify the intended behavior versus generic properties such
as safety, which requires the automata to stay away from a set
of “bad” states, as well as verify whether an implementation
is a refinement of the hybrid automaton.

Intuitively, a hybrid automaton is a “finite-state automaton”
with continuous variables that evolve according to dynamics
specified at each discrete location (or mode). The evolution of
a hybrid automaton alternates continuous and discrete steps.
In a continuous step, the location (i.e., the discrete state) does
not change, while the continuous variables change following
the continuous dynamics of the location. A discrete evolution
step consists of the activation of a discrete transition that can
change both the current location and the value of the state
variables, in accordance with the reset function associated
to the transition. The interleaving of continuous and discrete
evolutions is decided by the invariant of the location, which
must be true for the continuous evolution to proceed, and by
the guard predicate of the transition, which must be true for
a discrete transition to be active.

For example, the hybrid automaton in Fig. 2 can be used
to specify the required behaviors of a triangle wave generator
with period T and amplitude A. In the Up mode, the output y
of the generator is required to increase with a constant slope
until the internal variable t, initially set to zero, and increasing
with a slope of one, reaches T

2 . The generator will then switch
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Up 

𝑦 = 4𝐴
𝑇

 

𝑡 = 1 

 

0 ≤ 𝑡 ≤ 𝑇 2  

Down 

𝑦 = −4𝐴
𝑇

 

𝑡 = 1 

 

𝑇 2 ≤ 𝑡 ≤ 𝑇 

𝑡 ≥ 𝑇 2  

𝑡 ≥ 𝑇 

𝑡 →0 

𝑡=0 

Fig. 2. Hybrid automaton specifying a triangle wave generator.

to the Down mode, where y is required to decrease with the
same slope, while t will keep on increasing until it crosses T .
Once this threshold is crossed, the generator commutes back
to the Up mode, while t is reset to zero.

Verifying safety of a hybrid automaton with respect to a
prescribed set of bad states is equivalent to verifying that all
legal behaviors of the automaton do not go through any of the
bad states, i.e., the bad states are unreachable. The computa-
tion of the reachable set, which consists of all the states that
can be reached under the dynamical evolution starting from a
given initial state set, is non-trivial for hybrid automata. Since
the states of a hybrid automaton are pairs made by a discrete
location together with a vector of continuous variables, they
have the cardinality of continuum. Therefore, in general, it is
not possible to perform exact reachability analysis.

Hybrid automata come in several flavors. The original model
allows for arbitrarily complex dynamics and was developed
primarily for algorithmic analysis of hybrid systems [26]. The
class of hybrid input/output automata enables compositional
analysis of systems [30]. In timed automata [31] all the contin-
uous variables are clocks (they have derivative 1) that can only
be reset to zero. Many verification problems are decidable for
this class, making it an interesting formalism for verification
and requirement analysis. Rectangular automata [32] extend
timed automata by allowing piecewise constant dynamics,
while still keeping decidability of the reachability problem.
Linear hybrid automata [33] extend rectangular automata by
allowing guards and resets to be general linear predicates, at
the price of losing decidability.

Hybrid Automata and Contracts: We can express contracts
with hybrid automata by following the approach in [34].
We model the assumptions A with a hybrid automaton that
generates all the admissible input sequences for a component
(uniform assumptions), while we model the guarantees G as
the set of admissible output sequences for the component.
Then, a component M satisfies the contract if the behaviors
of the composition of the hybrid automata for A and M are
contained in G. When the guarantees are limited to safety
guarantees (“nothing bad can happen”), then the contract
satisfaction problem can be reduced to reachability analysis
of a composition of automata.

Composition of contracts can be represented by appropriate
composition operators on automata. For instance, the con-
junction of assumptions corresponds to intersection of the
associated automata, while their disjunction can be expressed
by non-deterministic choice.

Under suitable restrictions, the other operations on con-

tracts, as defined in Section II-C, can also be reduced to special
instances of the reachability problem for timed or hybrid
automata. Indeed, compatibility and consistency can be solved
by checking whether the set of behaviors of the automaton
describing, respectively, A and G is empty.

Checking refinement between two contracts C1 and C2 is
more involved. Based on the results in [34], for uniform
assumptions and safety guarantees, it is possible to associate
to each contract the automaton HA ‖ HG, obtained by
composition (‖) of the two automata HA and HG, respectively
describing the contract assumptions and guarantees. HA ‖ HG
models the behaviors admitted by the contract in the context of
its legal environments. Then, if A2 ⊆ A1, contract refinement
can be verified by checking the inclusion of the reachable sets
of the two hybrid automata HA1

‖ HG1
and HA2

‖ HG2
asso-

ciated with the contracts. When the evolution of the two hybrid
automata cannot be computed exactly, this becomes a difficult
task, since it requires computing both over-approximations and
under-approximations of the evolution, a capability supported
by very few tools.

C. Verification Tools

As shown in Section III-A and Section III-B, the operations
and relations on temporal logic and hybrid automata contracts
can be reduced to basic verification tasks. In this section,
we discuss some of the approaches reported in the literature
to perform these tasks, together with the tools embodying
them. Specifically, we focus on formal verification of hybrid
models, which generates, in general, intractable problems, and
classify the verification tools into five categories, based on the
strategies adopted to deal with intractability.

1) Tools Based on Exact Reachability Set Computation:
When the system dynamics are simple enough to be captured
by timed or rectangular automata, their evolution can be
computed exactly, and most of the verification techniques for
finite-state models can be used to obtain an exact answer to
verification problems.

A seminal tool in this category is KRONOS [35], which
verifies real-time systems modeled by timed automata with
respect to requirements expressed in the real-time logic TCTL
(Timed Computation Tree Logic), using a backward-forward
analysis approach.

The same approach was then extended to support rectan-
gular automata in HYTECH [36], by dealing with polyhedral
state sets. A key feature of HYTECH is its ability to perform
parametric analysis, that is, to determine the values of design
parameters for which a rectangular hybrid automaton satisfies
a temporal-logic requirement. It can then be used as an
evaluation engine for optimization-based design exploration,
as discussed in Section V.

Modern tools use a different approach, based on an on-
the-fly verification algorithm that does not need to build the
entire reached set of the system. The most relevant tool using
this approach is UPPAAL [37], written in Java and C++, and
equipped with a graphical user interface. It handles real-time
systems modeled as networks of timed automata, and complex
properties expressed in a subset of CTL. Since the dynamics
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are represented just by clocks, it can support models with up
to 100 of them. A comparison of the performance of the three
tools above on the well-known railroad crossing example can
be found in [38].

2) Tools Based on Reachable Set Approximations: When
the dynamics is more complex, the reachable set cannot be
computed exactly. Nevertheless, approximation techniques can
be used to obtain an answer in some cases. This approach is
mainly used to verify safety properties: the system is safe if
the reachable set is included in the safe set of states. Hence,
over-approximations may be used to obtain positive answers,
while under-approximations give negative answers.

One of the first tools that enabled verification of hybrid
systems with complex dynamics is d/dt [39]. The tool approx-
imates reachable states for hybrid automata where the con-
tinuous dynamics is defined by linear differential equations.
Being one of the first approaches, the tool does not allow the
composition of automata, and is limited in scalability.

PHAVER [40] handles affine dynamics and guards and
supports the composition of hybrid automata. The state space
is represented using polytopes. Results are formally sound
because of the exact and robust arithmetic with unlimited
precision. Scalability is, however, limited: models with more
than 10 continuous variables are usually out of the capabilities
of the tool.

SPACEEX [41] improves upon PHAVER in terms of scal-
ability: models with 100 variables have been analyzed with
this tool. It combines polyhedra and support functions to
represent the state space of systems with piecewise affine, non-
deterministic dynamics. Differently from PHAVER, the result
of SPACEEX is not guaranteed to be numerically sound. This
means that when the tool states that the system is safe, we can
only conclude that more sophisticated methods are necessary
to find bugs for that system.

FLOW* [42] supports systems with non-linear ODEs (poly-
nomial dynamics inside modes, polyhedral guards on discrete
transitions) by representing the state space using Taylor mod-
els (bounded degree polynomials over the initial conditions
and time, bloated by an interval). Results are guaranteed to
be numerically sound but scalability is limited to a dozen
variables.

ARIADNE [43], [34] uses numerical methods based on the
theory of computable analysis to manipulate real numbers,
functions and sets in the Euclidean space in order to verify
hybrid systems with non-linear dynamics, guards and reset
functions. It supports composition to build complex systems
from simpler components, and can compute both upper-
approximations and lower-approximations of the reachable
set, which play the role of over and under approximations.
By combining them, ARIADNE can provide both positive
and negative answers to the verification of safety properties
and other more complex problems. Its expressivity, however,
affects performance and scalability, which is currently limited
to models with up to 10 continuous variables.

An alternative approach to approximate the reachable set
of a hybrid automaton is to drop the standard infinite pre-
cision semantics, and adopt an ε-semantics where states
whose distance is less than a fixed ε are indistinguishable.

Under this assumption the reachability problem for hybrid
automata becomes decidable [44]. PYHYBRIDANALYSIS [45]
is a Python package that implements the ε-semantics approach
to symbolically compute an approximation of the reachability
region of hybrid automata with semi-algebraic dynamics.

3) Tools Based on Discrete Abstractions: In this setting,
the hybrid model under verification is first abstracted by a
finite-state discrete model that approximates the original one.
If the abstraction is not accurate enough to obtain an answer
to the verification problem, it is improved until either an
answer is found or the maximum number of refinement steps
is reached [46], [47]. The main advantage of this approach is
that, in some cases, an answer to the verification problem can
be obtained with few refinement steps, even for very complex
models.

The refinement algorithm proposed in [47] has been imple-
mented by CHECKMATE [48], a MATLAB/SIMULINK toolbox
for the simulation and verification of hybrid systems with
linear and affine dynamics. The abstraction of the system
is obtained with a method called flow pipe approximation,
where the reachable set over a bounded time interval [0, t] is
approximated by the union of a sequence of convex polyhedra.

One of the first tools to extend this approach to non-linear
systems is HSOLVER [49], which uses constraint propagation
and abstraction-refinement techniques to discretize the state
space of the system and verify safety properties. HSOLVER
supports systems with complex non-linear dynamics and
guards, but it does not support the composition of automata.
Because of the particular state-space representation, it cannot
provide a graphical output of the reachable set, but only a
safe/possibly-unsafe answer to the verification problem.

HYBRIDSAL [50] uses predicate abstraction to abstract
the discrete dynamics and qualitative reasoning to abstract
the continuous dynamics of polynomial hybrid systems. The
algorithm can be applied compositionally to abstract a system
described as a composition of automata. Results are guaranteed
to be sound. Its scalability is limited: only 10 continuous
variables can be handled.

HYCOMP [51] uses a different approach, where the system
is abstracted with a discrete but infinite-state model using
an SMT approach. The abstraction is precise for piecewise
constant dynamics and is an over-approximation for affine
dynamics. Results are guaranteed to be sound (the SMT-
solver uses infinite-precision arithmetic). The tool was tested
successfully on models with 60 continuous variables with
piecewise constant dynamics and 150 Boolean variables.

4) Tools Based on Automated Theorem Proving: Given a
sufficiently expressive logic, the verification problem can be
reduced to test whether a formula of the form Sys → Prop
is valid (a logical tautology), where Sys is a representation
of the system under verification and Prop is the property of
interest. Automated theorem proving techniques can thus be
used to solve the problem. While in principle this approach
can easily manage parametric and partially specified systems,
and properties of arbitrary complexity, very few tools exploit
it in the context of hybrid systems. This is mainly due to the
need for a complex temporal logics to describe the system in
detail, and to the fact that automated theorem provers usually
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need some intervention from the user to guide the proof search
and find an answer.

A robust tool using theorem proving techniques in the
context of hybrid systems is KEYMAERA [28], which com-
bines deductive, real algebraic, and computer algebraic prover
technologies. Systems and properties are specified using the
temporal logic dL. To automate the verification process,
KEYMAERA implements automatic proof strategies that de-
compose the hybrid system specification symbolically. The
tool is particularly suitable for verifying parametric hybrid
systems and has been used successfully for verifying collision
avoidance in case studies from train control to air traffic
management.

5) Tools Based on Simulation: A simulation-based ap-
proach can be used to verify black-box models (when the
internal dynamics is unknown), or models of more complex
systems, since simulation can be made more computationally
feasible (in fact, simulation is simply a virtual test bench
that gives answers as good as the questions that are asked,
hence there is no guarantee that the system behaves correctly
under all conditions). Simulation-based verification explores
the state space of the system by computing a set of trajectories
while hoping to cover as much as possible the relevant parts
of the state space. If one of the trajectories violates the
property, a counterexample is found and a negative answer
to the verification problem is given. Otherwise, no conclusion
can be made on the truth of the property, since simulation
cannot cover the entire state space. Similarly, simulation-
based verification cannot be used, in general, to certify the
satisfaction of a contract, but rather to monitor and detect
possible violations.

A first tool based on simulation is BREACH [52], a MAT-
LAB/C++ toolbox for the simulation, verification of temporal
logic properties and reachability analysis of dynamical sys-
tems, defined as systems of ordinary differential equations
(ODEs) or by external modeling tools such as SIMULINK. It
uses systematic simulation to compute an under-approximation
of the reachable set based only on a finite (though possibly
large) number of simulations. It supports complex properties
in STL and parameter synthesis.

S-TALIRO [53] is also a suite of tools for the analysis of
continuous and hybrid dynamical systems using linear time
temporal logic. Distributed as a MATLAB toolbox, it uses a ro-
bustness metric to guide the state space exploration, exploiting
randomized testing and stochastic optimization techniques to
maximize the chance of finding a counterexample. Similarly to
BREACH, it supports complex properties in Metric Temporal
Logic and parametric systems.

Finally, System Level Formal Verification (SLFV) [54]
can prove system correctness notwithstanding uncontrollable
events (such as faults, variation in system parameters, external
disturbances) by exhaustively considering all the relevant
simulation scenarios.

IV. PLATFORM COMPONENT-LIBRARY DEVELOPMENT

In the bottom-up phase of the design process, a library of
components, models and related contracts is developed for

the plant and the embedded system. As shown in Fig. 1
(a), components and contracts are hierarchically organized
to represent the system at different levels of abstraction,
e.g. steady-state, discrete-event, and hybrid levels. Typically,
at the highest levels of abstraction, a signal flow approach is
more appropriate to CPS modeling, as is the case in signal pro-
cessing, feedback control based on sensor outputs and actuator
inputs, and in systems composed of unilateral devices [55].
In these cases, relations between system variables are better
viewed in terms of inputs and outputs, and interconnections
in terms of output-to-input assignments. Inputs are used to
capture the influence of the environment on the system, while
outputs are used to capture the influence of the system on
the environment. At the lowest levels of abstraction, acausal
models, without a-priori distinction between inputs and out-
puts, may be more suitable to model the majority of physical
(e.g. mechanical, electrical, hydraulic or thermal) components,
which are generally governed by laws that merely impose
relations (rather than functions) among system variables, and
where interconnections mean that variables are shared (rather
than assigned) among subsystems.

Reflecting the taxonomy of requirements, the component
library is also viewpoint and domain dependent. At each
level of abstraction, components are capable of exposing
multiple, complementary viewpoints, associated with different
design concerns and different formalisms (e.g. graphs, linear
temporal logic, algebraic differential equations). Moreover,
following the platform component definition in Section II-C,
models include extra-functional (performance) metrics, such
as timing, energy and cost, in addition to the description of
their behaviors.

Components and contracts can then be expressed using the
same formalisms introduced in Section III, in the context of
requirement analysis and system verification. A major chal-
lenge in this multi-view and hierarchical modeling scenario
remains to maintain consistency among models and views,
often developed using domain-specific languages and tools,
as the library evolves [3]. In this respect, the algebra of
contracts can offer an effective way to incrementally check
consistency or refinement among models. This information
can then be stored in the library to speed up verification tasks
at design time [14]. Moreover, vertical contracts can be used
to establish conditions for an abstract, approximate model, to
be a sound representation of a concrete model, i.e. to define
when a model still retains enough precision to address specific
design concerns, in spite of the vagueness required to make it
manageable by analysis tools [5]. In the following, we briefly
review the main languages and tools for system modeling and
simulation, as well as a few attempts at their integration.

A. Languages and Tools for System Modeling and Simulation

A number of modeling and interchange languages have
been proposed over the years to enable checking system prop-
erties, exploring alternative architectural solutions for the same
set of requirements, and exchanging the system descriptions
between the different tasks of the design flow (e.g. controller
design, validation, verification, testing, and code generation).
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An exhaustive survey is out of the scope of this paper. Among
the several languages and tools, we recall here:

• Generic modeling and simulation frameworks, such as
MATLAB/SIMULINK3 and PTOLEMY II4;

• Hardware description languages, such as Verilog5,
VHDL6, or transaction-level modeling languages, such as
SystemC7, together with their respective analog-mixed-
signal extensions8;

• Modeling languages specifically tailored for acausal
multi-physics systems, such as Modelica9, supported by
tools such as DYMOLA10 or JMODELICA11;

• Languages for architecture modeling, such as the Sys-
tems Modeling Language (SysML)12 and the Architecture
Analysis & Design Language (AADL)13.

While some of these languages and tools mostly focus on
simulation, some others are also geared towards modeling,
analysis and verification of extra-functional properties.

A number of proposals have also appeared towards model-
ing languages specifically tailored to CPS. One of the first ex-
amples of these languages is Charon [56]. Charon supports the
hierarchical description of system architectures via the opera-
tions of instantiation, hiding, and parallel composition. Con-
tinuous behaviors can be specified using differential as well as
algebraic constraints, all of which can be declared at various
levels of the hierarchy. A few years later, Giotto [57] provided
an abstract programming model for the implementation of
embedded control systems with real-time constraints. Giotto
allows the designer to specify time-triggered sensor readings,
task invocations, actuator updates, and mode switches in a way
that is independent from the implementation details. The code
can then be annotated with platform-dependent constraints to
automatize the validation of the model and the synthesis of the
control software. A more recent modeling language proposal is
the Hierarchical Timing Language (HTL) [58]. In HTL critical
timing constraints are specified within the language, and forced
by the compiler. Programs in HTL are extensible by adding
new program modules, and by refining individual program
tasks. This mechanism is invariant under parallel composition,
and allows individual tasks to be implemented using external
languages to ease interoperability.

All the above languages are not intended to be interchange
formats, in that they generally lack the capability to easily
interface with other tools. A first proposal for a truly platform-
independent interchange format based on hybrid automata is
the Hybrid System Interchange Format (HSIF) [59]. HSIF

3http://www.mathworks.com/products/simulink
4http://ptolemy.eecs.berkeley.edu
5http://www.verilog.com/
6http://www.vhdl.org
7http://www.accellera.org/downloads/standards/systemc
8http://www.eda.org/verilog-ams/, http://www.eda.org/vhdl-ams/,

http://www.accellera.org/downloads/standards/systemc/ams
9https://www.modelica.org/
10www.dynasim.se/
11http://www.jmodelica.org/
12SysML is an object oriented modeling language largely based on the

Unified Modeling Language (UML) 2.1, which also provides useful extensions
for systems engineering (http://www.omg.org/spec/SysML).

13http://www.aadl.info/aadl/currentsite

can represent networks of hybrid automata, albeit without
hierarchy or modules. Variables can be shared or local, and
the communication mechanism is based on broadcasting of
Boolean signals. Other examples are the METROPOLIS meta-
model [60], which also accounts for implementation consid-
erations, such as equation sorting and event detection, and
the interchange format for switched linear systems defined
in [61]. More recently, the Compositional Interchange Format
(CIF) has been proposed to overcome some of the limitations
of previous languages [62], such as the absence of hierarchy
in HSIF, and the limitation to linear dynamics only in [61].
CIF is a generic exchange format, integrating compositional
semantics with automata, process communication and syn-
chronization based on shared events, differential algebraic
equations, different forms of urgency, and process definition
and instantiation to support re-use and large scale system
modeling. It can interface with a number of other languages
and tools (e.g. UPPAAL, PHAVER, ARIADNE, MODELICA,
MATLAB), and is currently used in both academia and in-
dustry.

As an alternative approach to facilitate the integration of
different domains and models within a unifying framework,
Shah et al. [63] propose the customization of SysML [64]
by using profiles and domain specific languages to support
multiple representations (or architectures) of the system, and
graph transformations to describe the relations between them.

Finally, particularly appealing for CPS modeling and simu-
lation is the Functional Mockup Interface (FMI), an evolving
standard for composing component models, which are better
realized and characterized using distinct modeling tools [65],
[66]. Initially developed within the MODELISAR project,
and currently supported by a number of industrial partners
and tools14, FMI shows promise for enabling the exchange
and interoperation of model components. The FMI standard
supports both co-simulation, where a component called FMU
(Functional Mock-up Unit) implements its own simulation
algorithm, and model exchange, where an FMU exports suffi-
cient information for an external simulation algorithm to ex-
ecute simulation. However, while in principle FMI is capable
of composing components representing timed behaviors, in-
cluding physical dynamics and discrete events, several aspects
of the standard, e.g. to guarantee that a composite model does
not exhibit non-deterministic and unexpected behaviors, are
currently object of investigation [67].

V. MAPPING SPECIFICATIONS TO IMPLEMENTATIONS

In the absence of a unified framework for automated
synthesis of CPS simultaneously subject to a heterogeneous
set of requirements, we reason about different aspects or
representations of the design by using specialized analysis
and synthesis (mapping) frameworks that can operate with
different formalisms. During design space exploration, both
horizontal and vertical contracts can be used to define both the
specification and the implementation platforms, thus playing
an essential role in checking or enforcing that an aggregation

14https://www.fmi-standard.org/
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of components is compatible, and that the implementation is
a correct refinement of the specification.

At each abstraction level, mapping to a lower level can be
performed by either leveraging a synthesis tool, or by solving
an optimization problem that uses constraints from both the
specification and the implementation layers to evaluate global
tradeoffs among components. Accordingly, we denote as Csyn
a contract that can be used as input of a specialized synthesis
tool, and as Copt a contract that serves as a conjunction of
constraints in a more generic optimization problem. Copt can
be further characterized as Cver ∧ Csim, where Cver denotes a
contract whose satisfaction can be formally verified, e.g. using
the tools introduced in Section III, while Csim refers to a
contract that can only be checked by simulation. In the
following, we provide examples of mapping techniques and
tools for the different design tasks in our methodology.

A. Architecture Design

In the design of the system architecture, CA,syn in Fig. 1
(a) includes the specification contract, e.g. expressed in terms
of linear (or quadratic) arithmetic constraints on Boolean
and real variables, as well as the steady-state models of the
architecture, e.g. represented as constraints on a graph. Then,
an implementation can be directly synthesized by solving a
mixed integer-linear (or quadratic) program to minimize a
cost function (e.g. component number, weight, cost, energy)
while satisfying the constraints above [13]. As shown in [13],
the formulation above encompasses a variety of requirements,
such as connectivity, safety, reliability, and energy balance.
These requirements are mapped on a representation of the
system architecture, e.g. in terms of a labelled graph, where
nodes represent the (parameterized) components and edges
represent their interconnections.

To handle reliability requirements, the ARCHEX frame-
work [13], [68] implements two algorithms to decrease the
complexity of exhaustively enumerating all failure cases on
all possible graph configurations, namely, Integer-Linear Pro-
gramming Modulo Reliability (ILP-MR) and Integer-Linear
Programming with Approximate Reliability (ILP-AR). ILP-
MR lazily combines an ILP solver with a background exact
reliability analysis routine, following an approach similar
to [69], [22]. The solver iteratively provides candidate con-
figurations that are analyzed and accordingly modified, only
when needed, to satisfy the reliability requirements. Although
exact reliability analysis is an NP-hard problem, the idea is
to perform it only when needed, i.e. a small number of times,
and possibly on smaller graph instances. Conversely, ILP-AR
eagerly generates a monolithic problem instance in polynomial
time, using approximate reliability computations that can still
provide estimates to the correct order of magnitude, and with
an explicit theoretical bound on the approximation error. The
synthesized architecture can then serve as a specification for
the control design step.

B. Control Synthesis

Control synthesis deals with the problem of mapping
(synthesizing) high-level formal requirements (e.g. CC,syn in

Fig. 1 (a)), and a description of the plant, into a lower-
level, correct-by-construction, controller that implements the
desired requirements once it is composed with the plant. We
review below the main techniques for the synthesis of control
algorithms for CPS.

1) Reactive Synthesis: When requirements are expressed
using a discrete-time temporal logic (e.g. LTL or CTL), con-
troller synthesis can be solved using techniques from reactive
synthesis, which has been an active area of research since the
late 1980s, and it is still attracting a considerable attention
today [70], [71], [72], [73]. In this case, the specifications are
mapped on a DE implementation of the controller, e.g. in terms
of a state machine that represents a lower level of abstraction
in the design refinement process.

Let E and D be sets of environment (input) and con-
trolled (output) variables, respectively, of a DE controller.
Let s = (e, d) ∈ E × D be its state, and CLTL an LTL
contract of the form (ϕe, ϕe → ϕs), where ϕe characterizes
the assumptions on the environment and ϕs characterizes the
system requirements. Reactive synthesis can then be viewed
as a two-player game between an environment that attempts
to falsify the specification in CLTL and a controlled plant
that tries to satisfy it. A control strategy is a partial function
f : (s0s1 . . . st−1, et) 7→ dt, which selects the value of the
controlled variables based on the state sequence so far and the
behavior of the environment so that the (controlled) system
satisfies ϕs as long as the environment satisfies ϕe. If such a
strategy exists, the specification is said to be realizable. For
general LTL, the synthesis problem has a doubly exponential
complexity. However, a subset of LTL, namely generalized
reactivity (1) (GR(1)), generates problems that are polynomial
in |E × D|, the number of valuations of the variables in E
and D [70]. Given a GR(1) specification, there are game
solvers and digital design synthesis tools that generate a finite-
state automaton that represents the control strategy for the
system [74], [73], [75], [76], [77].

When the requirements also involve continuous variables,
by “replacing” continuous dynamics by discrete abstractions it
is possible to reduce the synthesis problem to a purely discrete
one and therefore within the realm of reactive synthesis, or
other established DE system control synthesis methods [78],
[79], as available for instance in the third revision of the CIF
language for supervisory control synthesis [80]. More recently,
a synthesis method for discrete-time CPS subject to STL
specifications has been proposed based on a model predictive
control framework [81], [82]. The STL specifications are
encoded as mixed integer-linear constraints on the system
variables of an optimization problem that is solved at each
step, following a receding horizon approach.

2) Synthesis by Abstraction: Because of the limited appli-
cability of existing tools to large-scale CPS hybrid models,
constructing effective abstractions in a compositional way is
key in order to tackle the synthesis problem. Indeed, the notion
of approximate bisimulation [83] has been recently introduced
to obtain correct and complete abstractions of differential
equations that can be used to solve controller design problems.
PESSOA [84] is a software toolbox, which exploits approxi-
mate bisimulation to implement efficient synthesis algorithms
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operating over the equivalent finite-state machine models. The
resulting controllers are also finite-state and can be readily
transformed into code for any desired digital platform. This
transformation assigns the finite-state controller operation to a
processor, where code is the result of mapping the controller
equations into the instruction set of the processor.

Another approach to mapping a controller into a processor
is the control software synthesis tool QKS [85]. Given the
sampling time of the controller and the precision of the
analog-to-digital conversion of state measurements, QKS can
compute both the controllable region and an implementation
in C code of a controller driving the system into a goal region
in finite time.

A library-based compositional synthesis approach that di-
rectly conforms to the PBD paradigm has recently been
presented to solve high-level motion planning problems for
multi-robot systems [86]. The desired behavior of a group
of robots is specified using a set of safe LTL properties
(top-down step of the flow). The closed-loop behavior of the
robots under the action of different lower-level controllers
is abstracted using a library of motion primitives, each of
which corresponds to a controller that ensures a particular
trajectory in a given configuration (bottom-up step of the flow).
By relying on these primitives, the mapping problem is then
encoded as an SMT problem and solved by using an off-the-
shelf SMT solver to efficiently generate control strategies for
the robots.

3) Hybrid Controller Synthesis: Several real-time con-
straints, mostly related to the physical plant and the hardware
implementation of the controller, may require the full expres-
siveness of continuous and hybrid models. However, solving
the controller synthesis problem by directly mapping to these
abstractions is a very difficult task [87]. Even in the context of
timed automata, where the synthesis problem is known to be
solvable in an exact way [88], efficient and practical tools are
lacking. One of the few exceptions is UPPAAL-TIGA [89],
[90], an extension of UPPAAL that implements on-the-fly al-
gorithms for solving the controller synthesis problem on timed
automata with respect to reachability and safety properties
expressed using timed computation tree logic.

Most of the algorithms for controller synthesis of hybrid
automata subject to a safety specification are based on solving
a differential game in which the environment is trying to
drive the system into its target set at the same time as
avoiding the target set of the controller (see [91], [92] for a
general formulation). Some examples are the symbolic semi-
algorithm to compute the controllable region of a linear hybrid
automaton with respect to a safety goal described in [93],
and the procedure to synthesize the maximal safe controller
for more general hybrid systems with a lower bound on
event separation reported in [92]. One of the few publicly
available tools implementing this two-person game approach
is PHAVER+ [94], an extension of PHAVER that can automat-
ically synthesize discrete controllers for linear hybrid automata
with respect to safety and reachability goals.

In [95] and [96] two synthesis (mapping) approaches are
presented that can incorporate finite-precision sensors and
actuators as well as the finite response time of the controller.

The synthesis problem is addressed for two sub-classes of
hybrid automata, namely elastic controllers, and lazy linear
hybrid automata, operating in an environment represented by
hybrid automata. Elastic controllers are timed automata with-
out invariants and with closed guards. They were introduced
in [97], [98], together with a parametric semantics for timed
controllers called the Almost ASAP semantics, which relaxes
the standard idealized ASAP (As Soon As Possible) semantics
that cannot be implemented by any physical device no matter
how fast it is. The result is that any correct Almost ASAP
controller can be implemented by a program on a hardware if
this hardware is fast enough. A corresponding automated tool
chain, reported in [95], can extract from an elastic controller a
correct-by-construction HW/SW implementation described in
SystemC. On the other hand, lazy linear hybrid automata [99]
are used to model the discrete-time behavior of control systems
containing finite-precision sensors and actuators interacting
with their environment under bounded delays. A methodology
and a corresponding tool chain to synthesize an implementable
control strategy for LLHA is discussed in [96].

C. Optimized Mapping and Design Space Exploration

Whenever correct-by-construction synthesis from require-
ments results into intractable problems, it is still possible to
cast the design exploration problem, in its more general terms,
as an optimization problem, where the system specifications
are checked by a formal verification engine or by monitoring
simulation traces. For instance, let Csim = (φe, φe → φs) be a
contract that must be checked by simulation, where φe and φs
are temporal logic formulas. Then, given an array of costs C,
the mapping problem can be cast as a multi-objective robust
optimization problem, to find a set of configuration parameter
vectors κ∗ that are Pareto optimal with respect to the objectives
in C, while guaranteeing that the system satisfies φs for all
possible traces s satisfying the environment assumptions φe.
More formally,

min
κ∈K,π∈Π

C(κ, π) (5)

s.t.

 F(s, κ) = 0

s |= φs(π) ∀s s.t. s |= φe(π)

where π is a set of formula parameters used to capture degrees
of freedom that are available in the system specifications, and
whose final value can also be determined as a result of the
optimization process. For a given parameter valuation κ′, s′ is
shorthand notation for s′(t) = (u′(t), y′(t), x′(t)), the trace of
input, output and internal signals (here represented as vectors
of traces over time t ∈ R+) that are obtained by simulating
the behavioral model F(.), defined in Section II-C. A multi-
objective optimization algorithm with simulation in the loop
can then be implemented to find the Pareto optimal solutions
κ∗. While this may be expensive in general, it becomes the
only affordable approach in many practical cases.

The mapping methodology above can also encompass con-
tracts of the form Cver = (φe, φe → φs) whose satisfaction
can still be efficiently verified via formal methods, even if
the synthesis problem is intractable. Moreover, it can be used
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Fig. 3. Single-line diagram of an aircraft electric power system (Figure
from [13]).

to perform joint design exploration of the controller and its
execution platform, while guaranteeing that their specifica-
tions, captured by vertical contracts, are consistent. Typically,
the controller requirements are defined in terms of several
aspects that are related to the execution platform, including the
timing behavior of the control tasks and of the communication
between tasks, their jitter, the accuracy and resolution of the
computation, and, more generally, requirements on power and
resource consumption. These requirements are taken as as-
sumptions by the controller, which in turn provides guarantees
in terms of the amount of requested computation, activation
times and data dependencies. As mentioned in Section II-B,
the association of functionality to architectural services to eval-
uate the characteristics (such as latency, throughput, power,
and energy) of a particular implementation by co-simulation
of both a functional model and an architectural model of the
system is supported by frameworks such as METRONOMY.

VI. AIRCRAFT POWER DISTRIBUTION DESIGN EXAMPLE

We illustrate the application of the methodology introduced
in this paper to the design of supervisory control systems for
aircraft power distribution [13], [100].

Figure 3 shows a sample structure of an aircraft electric
power system (EPS) in the form of a single-line diagram,
a simplified notation for three-phase power systems [101].
Generators (e.g., two on the left and two on the right side of the
aircraft, denoted as GEN in Fig. 3) deliver power to the loads
(e.g. avionics, lighting, heating and motors, not represented in
Fig. 3) via high-voltage and low-voltage AC (HVAC, LVAC)
and DC buses (HVDC, LVDC), while the Auxiliary Power
Units (APU) or batteries (Batt) are used when one of the
generators fails. Essential buses (ESS in Fig. 3) supply loads
that cannot be unpowered for more than a predefined period
tmax, while non-essential buses supply loads that may be
shed in the case of a fault. Contactors are electromechanical
switches that are opened or closed to determine the power flow
from sources to loads, and are shown as double bars in the
figure. AC transformers (ACT) convert high-voltage to low-

voltage AC power. Rectifier Units (RUs) convert and route
AC power to DC buses. Transformer Rectifier Units (TRUs)
act both as transformers and rectifiers.

The goal of the supervisory controller (not represented in
Fig. 3) is to react to changes in system conditions or failures
and reroute power by appropriately actuating the contactors, to
ensure that essential buses are adequately powered. A pictorial
representation of the proposed design flow as instantiated
for the EPS is shown Fig. 1. In the following, we briefly
summarize the main steps followed to map the top-level
system requirements into a lower level representation of both
the plant architecture and the control algorithm, to be further
refined during subsequent design steps. Our summary is based
on the results in [13].

A. Top-Level Requirements
As a first step, top-level requirements are captured in terms

of a system contract CS using an electric power system
domain-specific language (DSL), which enables automatic
translation of the specifications from a set of pre-defined
primitives to one of the back-end formalisms mentioned in
Section III. The proposed DSL can smoothly interface with
pre-existing tools, such as visual programs for single-line
diagrams, typically used by system engineers. Representative
examples of system assumptions and guarantees are provided
below.
A1. Reliability Level: A typical power system specification

would require that the failure probability for an essential
bus (i.e., the probability of being unpowered for longer than
tmax by any of the available generators) be smaller than
a certain target rS , e.g. corresponding to 10−9 per flight
hour. The probability rS is the reliability level of the system.
To allow formalizing this requirement, a set of environment
assumptions characterize the number and kind of component
failures allowed, assuming that component failure events are
all independent.
A2. Irreversible failures: As a second set of environment

assumptions, we require that when any component fails during
the flight, it will not come back online.
G1. Reliability Level: The probability for an essential bus

to be unpowered by any of the available generators rT (i.e. the
probability that there is no possible interconnection between
the bus and any generator) must be smaller than the system
reliability level rS .
G2. Unhealthy sources: We require that the set of con-

tactors directly connected to an unhealthy source be open to
isolate it from the rest of the system.
G3. Operation in nominal conditions: Under nominal

conditions (i.e., when all generators and rectifier units are
healthy), primary generators and rectifiers on each side of the
electric power system topology must provide power to the
buses on the same side; all other paths (and auxiliary power
units) stay inactive.
G4. No paralleling of AC sources: To avoid generator

damage, AC sources should never be paralleled, i.e. no AC
bus can be powered by multiple generators at the same time.
G5. System reaction time: A DC essential bus can stay

unpowered for no longer than tmax in case of failure.
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The above system requirements are used to derive a contract
CT for the system architecture, in terms of arithmetic con-
straints on Boolean variables and failure probabilities (mixed
integer-linear inequalities), and a contract CC for the control al-
gorithm, expressed as a conjunction of LTL and STL contracts,
as shown in Fig. 1 (b). Architecture and control protocol need
to be consistently designed to satisfy CS , which can be guaran-
teed by showing that CT⊗CC is compatible and CT⊗CC � CS .
While this proof is performed manually in [13], reasoning with
contracts is still instrumental to co-designing architecture and
control. In particular, Propositions 6.1 and 6.2 of [13] show
that if system-level requirements are “partitioned” according to
CT and CC then the system can be designed in a compositional
way, i.e., the architecture and control design steps, summarized
below, can be independently deployed, while guaranteeing that
the assembled system is correct and satisfies CS .

Specifically, given a system reliability requirement rS ,
Proposition 6.2 states that, if the power system topology is
synthesized to implement the contract CT with a reliability
level rT ≤ rS , then there exists a time T ∗ (a function of the
synthesized topology and the contactor actuation delays) such
that a centralized controller implementing the contract CC for
the given topology, with a reliability level rS and tmax ≥ T ∗
can also be synthesized, and the resulting controlled system is
guaranteed to satisfy the top-level requirements.

B. Architecture Design

The plant architecture is modelled as a graph, where
each node represents a component (with the exception of
contactors, which are associated with edges) and each edge
represents an interconnection. At this level of abstraction, the
platform library L includes, as attributes, generator power
ratings, component costs and failure probabilities, in addition
to interconnection rules. The supervisory controller consists
of one or more finite state machines, and is characterized by
the reaction time Tr.

The safety, connectivity, power flow, and reliability re-
quirements in CT (both assumptions and guarantees) can be
expressed as linear inequalities on a set of Boolean variables,
each denoting the presence or absence of an interconnection
in the topology graph, as detailed in Section V. The trade-
off between redundancy and cost can then be explored us-
ing ARCHEX, and the synthesized topology is offered as a
specification for the control design step. As shown in Fig. 1
(c), the ILP-MR algorithm implemented in ARCHEX using
CPLEX [102] as a back-end optimization engine is able to
generate, in a few seconds, architectures for the primary distri-
bution of an electric power system (including two generators,
two AC buses, two rectifiers, two DC buses and two loads on
each side) for different reliability requirements.

C. Control Design

Controller requirements can be defined as a contract CC =
(AC , GC), where AC encodes the allowable behaviors of the
environment (including the physical plant) and GC encodes the
desired behaviors of the closed-loop system, i.e. the top-level
requirements. CS can then be expressed as the heterogeneous

conjunction between an LTL contract CLTL and an STL
contract CSTL. The STL formulas in CSTL can either be
obtained by heterogeneous refinement of a subset of LTL
formulas in CLTL or generated anew to capture design aspects
related to the plant and the hardware implementation of
the control algorithm, which cannot be expressed using the
Boolean, untimed or DE abstractions offered by LTL.

As shown in Fig. 1 (a), CLTL is first used together with
DE models of the plant components (also described by LTL
formulas) to synthesize a reactive control protocol in the form
of one (or more) state machines, as shown in Fig. 1 (d),
using reactive synthesis techniques. The resulting controller
will satisfy CLTL by construction. Satisfaction of CSTL is then
assessed on a hybrid model, including both the controller and
an equation-based representation of the plant, by monitoring
simulation traces while optimizing a set of system parameters.
The resulting optimal controller configuration is returned as
the final design, as represented in Fig. 1 (g).

Since the formulas in CLTL are within the GR(1) fragment
of LTL, a control protocol can be automatically synthesized
using the TULIP Toolbox [73]. For the topologies explored
in Section VI-B, a set of centralized and distributed control
protocols were synthesized for a reliability level rS = rT in
approximately 0.5 to 2 s, for a number of states ranging from
4 to 113. A hybrid model implemented in SIMULINK, based
on blocks from the SimPowerSystems library, as shown in
Fig. 1 (g), is instead used to analyze and optimize the real-
time performance of the controller, imported as a MATLAB
function. The plant model includes the effects of non-ideal
contactor response, implementing a fixed delay Td to the
open/close commands from the controller. It is then possible to
explore the Tr-versus-Td design space and find the maximum
allowed controller reaction time T ∗r for a fixed T ∗d , in such
a way that the essential DC bus is never out of range for
more than tmax. To do so, an optimization problem is cast
following the formulation in (5), where the constraints are
expressed as a conjunction of parameterized STL formulas
(with parameter π = Tr). In this case, the system behavior
is the trace s = (u, VDC), where VDC is the DC bus voltage
signal to be observed during simulation and u spans the set of
all admissible failure injection traces that are consistent with
the assumptions in CC . The BREACH toolbox [52] was used to
post-process the simulation traces and verify the satisfaction
of STL formulas.

As an example, for the architecture in Fig. 1 (g), Fig. 1
(e) shows the simulated voltage VB3 of bus B3 as a function
of time, for Tr = 15 ms, Td = 15 ms, tmax = 70 ms, and
in the worst case scenario of cascaded faults in generators
G1, G2 and rectifier R1 [100]. The red signal at the bottom
of the figure is interpreted as a Boolean signal, which is high
(one) when the requirement on the essential DC bus is violated
and low (zero) otherwise. The requirement on the DC bus is
violated for 32 ms. Therefore, (Tr = 15 ms, Td = 15 ms) is
an unsafe parameter set.

The Tr versus Td design space is explored in Fig. 1 (f)
by sampling the parameter space in approximately 4 hours
to populate a 13 × 13 point grid. The amount of elapsed
time while the DC bus voltage is out of range, i.e. when the
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requirement on the DC bus is violated, is compared with the
hard threshold tmax = 70 ms, thus providing the designer with
a “safe” region (marked in blue in Fig. 1 (f)) for selecting the
controller clock as a function of the contactor delay. As an
example, for Td = 20 ms the maximum controller reaction
time T ∗r allowed for safe operation is 4 ms.

VII. CONCLUSION

We presented a methodology that addresses the complexity
and heterogeneity of cyber-physical systems by leveraging
a contract framework to formalize the design process in a
hierarchical and compositional way, and interconnect different
modeling, analysis and synthesis tools, to ensure quality and
correctness of the final result. We surveyed formalisms and
tools that can support the methodology at different levels of
abstraction, from the level of discrete systems, to the one of
hybrid systems, modelled as networks of hybrid automata.
To illustrate the application of the methodology, we used a
concrete example from controller design in aircraft electric
power systems.

Inspired by the design examples, we envision a scenario in
which a design management feature that we call a front-end
orchestrator directly interacts with the designer, helps coordi-
nate the set of back-end specialized tools, and consistently pro-
cesses their results. For such an orchestrator to be developed, it
is essential to develop algorithms that can maximally leverage
the modularity offered by contracts, by directly working on
their representations to perform compatibility, consistency and
refinement checks on system portions of manageable size and
complexity. Moreover, these algorithms should take advantage
of any violation of the design constraints, i.e. a “counterexam-
ple” for system correctness, to provide meaningful feedback to
the designer, and possibly set up learning strategies to refine
or augment both the contract assumptions and guarantees until
a final implementation is reached.

Finally, we observe that several parameters impacting the
behavior of CPS are subject to variability due to manufacturing
tolerances, usage and faults. Moreover, the models that are
normally used to design multi-physics systems inevitably
introduce inaccuracies [103]. A survey on formalisms and
tools for stochastic system design is out of the scope of this
paper. However, the importance of providing a better support
for reasoning about the probabilistic properties of systems
and the deployment of robust design techniques cannot be
overemphasized. In this context, advancing the state of the
art in compositional approaches for stochastic systems and
stochastic contract frameworks (e.g. see [104], [105], [106]) is
deemed as essential to improve on the scalability of stochastic
analysis and synthesis techniques (e.g. see [107], [108]), and
make their adoption actually feasible in current design flows.
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