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Abstract Uncertainty is unavoidable in modeling dynamical systems and it
may be represented mathematically by differential inclusions. In the past, we
proposed an algorithm to compute validated solutions of differential inclusions;
here we provide several theoretical improvements to the algorithm, including
its extension to piecewise constant and sinusoidal approximations of uncertain
inputs, updates on the affine approximation bounds and a generalized formula
for the analytical error. The approach proposed is able to achieve higher order
convergence with respect to the current state-of-the-art. We implemented the
methodology in Ariadne, a library for the verification of continuous and hybrid
systems. For evaluation purposes, we introduce ten systems from the literature,
with varying degrees of nonlinearity, number of variables and uncertain inputs.
The results are hereby compared with two state-of-the-art approaches to time-
varying uncertainties in nonlinear systems.
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1 Introduction

In this paper we present a method for computing rigorous solutions of un-
certain nonlinear dynamical systems. Uncertainty arises due to environmental
disturbances and modeling discrepancies. The former include input and out-
put disturbances, and noise on sensors and actuators; the latter account for
the unavoidable approximation of a model with respect to the real system
due to unmodelled phenomena, order reduction and parameter variations over
changes of the environment and variations over time of the modeled system.
Such uncertainty and imprecision may be modeled by differential inclusions.
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Differential inclusions are a generalization of differential equations having
multivalued right-hand sides

ẋ(t) ∈ F (x(t)), x(0) = x0, (1)

see [4], [12], [42]. They arise in applications in a variety of ways within robotics,
engineering, physical and biological sciences. They can be used to model dif-
ferential equations with discontinuities, by taking closed convex hull of the
right-hand side as proposed by Filippov [17], but more importantly, use cases
arise from the analysis of complex or large-scale systems. One approach to an-
alyze a complex system is to apply model order reduction techniques to replace
a high-order system of differential equations ẋ = f(x) by a low-order system
of the form ż ∈ h(z) + [−ε, ε], where ε > 0 represents the error introduced
by simplifying the model (see [19]). Another way to analyze complex systems
is to analyze separately their components. When components depend on one
another, we can decouple them by replacing an input from another compo-
nent with noise that varies over the range of possible values, again resulting
in smaller but uncertain systems (see [8]).

Another important application area for differential inclusions is control
theory. Assume a control system

ẋ(t) = f(x(t), u(t)), x(0) = x0, (2)

where u(t) ∈ U is not completely controllable. Then, one may need to compute
reachable sets corresponding to all admissible inputs which, under certain
assumptions, is equivalent to computing the reachable set of a differential
inclusion. In fact, a well-known result states that solution sets of (2) and (1)
coincide if f(x, U) is continuous, f(x, U) is convex for all x, F (x) = f(x, U) =⋃
u∈U f(x(t), u), and U is compact and separable. The theorem and its proof

are given in [4] and with slight changes in the assumptions also in [36] or
[31]. A recent book [27] gives more insight on the application of differential
inclusions in control theory.

Similarly, we obtain a differential inclusion from the time-varying system
of differential equations

ẋ(t) = f(x(t), v(t)), x(0) = x0, v(t) ∈ V. (3)

Although the forms of (2) and (3) are identical, the interpretation is different;
in (2), the input u(t) can be chosen by the designer, whereas in (3), the input
is determined by the environment.

To reliably analyze the behavior and properties of a system, notably safety,
uncertainties in the system must be taken into account when modeling, and rig-
orous numerical methods are necessary in order to provide guaranteed correct
solutions. Designing numerical algorithms for computing solutions of differen-
tial inclusions rigorously, efficiently and with high precision, remains a point
of current research.

Finding the correct balance between speed and accuracy is a challenging
issue that depends on the application domain. While for online applications
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speed is crucial, accuracy may be a matter of life and death in cases such
as a robot performing laser incision on a patient. In [21], modeling in such
case was presented. In fact, uncertainties already arise when describing the
model at hand, hence differential inclusions seem like a natural framework for
this situation. Consequently, in this paper we present a method to compute
over-approximation of reachable sets of differential inclusions that prioritize
accuracy (higher order method) instead of speed. In particular, we are inter-
ested in obtaining a third order analytic error for input-affine systems in a
single time step and explain how an arbitrarily high order can be obtained.

1.1 Approach Used

Given the differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0, (4)

where F is a continuous set-valued map with compact and convex values, a
solution is given by an absolutely continuous function x : [0, T ] → Rn such
that, for almost all t ∈ [0, T ], x(·) is differentiable at t and ẋ(t) ∈ F (x(t)). The
solution set ST (x0) ⊂ C([0, T ],Rn) is defined as

ST (x0) = {x(·) ∈ C([0, T ],Rn) | x(·) is a solution of (4)}.

The reachable set at time t, R(x0, t) ⊂ Rn, is defined as

R(x0, t) = {x(t) ∈ Rn |x(·) ∈ St(x0)}.

In order to provide an over-approximation of the reachable set of (4), we
compute solutions of an auxiliary system

ẏ(t) = f(y(t), w(t)), y(0) = x0, w(·) ∈W,

by finding appropriate functions w(t) and set W , and adding uniform error
bound on the difference between the two solutions.

In our previous papers [46] and [23], the algorithm for obtaining an over-
approximation in such a way was presented, the derivation in the one-dimensio-
nal additive case with its corresponding error formula was given, cases of affine,
step and sinusoidal auxuliary functions were revealed and some computational
results were showcased. Here, we provide the derivation of the local error for a
general input-affine system and extract formulas for the error in several cases.
Namely, we present errors of O(h), O(h2), and O(h3) explicitly with suitable
w(t), and show how arbitrary higher order error could be achieved. Formulas
for the local error are obtained based on Lipschitz constants, Logarithmic norm
and bounds on higher-order derivatives. Computational results are more thor-
ough providing insights on dependency on the simplification period, number
of parameters and noise levels.

An important tool in the study of affine control systems (2) is based on the
Fliess expansion [18], in which the evolution over a time-step h is expanded
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as a power-series in integrals of the input. A numerical method based on this
approach was given in [25]. The method cannot be directly applied to study
uncertain systems (3), since for this problem we need to compute the evolution
over all possible inputs, and this point is only briefly addressed. Our method
is based on a Fliess-like expansion, and extends the results of [25] by providing
error estimates which are valid for all possible inputs.

We use the logarithmic norm when possible, which gives better estimates
than the Lipschitz constant. The logarithmic norm was introduced indepen-
dently in [11], and [33] in order to derive error estimates to initial value prob-
lems, see also [43]. Using the logarithmic norm is advantageous over the use of
the Lipschitz constant in the sense that the logarithmic norm can have neg-
ative values, and thus, one can distinguish between forward and reverse time
integration, and between stable and unstable systems. The definition of the
logarithmic norm and a theorem on the logarithmic norm estimate is given in
Section 2.

The numerical results given in this paper were obtained using the function
calculus implemented in Ariadne [3], a tool for reachability analysis and
verification of cyber physical systems. In particular, we use Taylor Models for
the rigorous approximation of continuous functions. A Taylor Model expresses
approximations to a function in the form of a polynomial (defined over a
suitably small domain) plus an interval remainder, see [34].

1.2 Related Works

One of the first algorithms for obtaining solution sets of a differential inclusion
was given in [20] and [37]. In [20] they used viability kernels and in [37] they
considered Lipschitz differential inclusions, giving a polyhedral method for ob-
taining an approximation of the solution set to an arbitrary known accuracy.
In the case where F is only upper-semicontinuous with compact, convex val-
ues, it is possible to compute arbitrarily accurate over-approximations to the
solution set, as shown in [9].

To date, some different techniques and various types of numerical methods
have been proposed as approximations to the reachable set of a differential
inclusion. Some of the early algorithms used ellipsoidal calculus [30], grid-
based methods [37,6], optimal control [5], discrete approximations [14,16,15],
[24], and hybrid bounding methods [38]. However, most of these algorithms
are of low order and/or time costly.

In recent years, the focus of approximating reachable set shifted to provid-
ing rigorous solutions, i.e. over-approximations of the solution set, and several
algorithms have been proposed. Interval Taylor Models were used in [32] and
[7]; an algorithm based on comparison theorems was given in [28]; support vec-
tor machines were used in [39]; a Lohner-type algorithm was used in [29] and
[40]; conservative linearization was used in [2]; a set-oriented method in [13],
and polynomialization was used in [41] and [1]. Among these, most suitable for
comparison are [41], [1], and [7], since [41] provides convergence analysis, [1]
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is higher-order method, and [7] uses the same function calculus as our method
(Taylor Models). However, only [1] and [7] are implemented in state-of-the-art
tools similar to Ariadne, i.e. CORA and Flow*, respectively.

Hence, in this paper we demonstrate efficiency and accuracy of our al-
gorithm by testing ten nonlinear systems of different sizes and inputs, and
we compare reachable sets that we obtain with the ones produced by Flow*
and CORA. Moreover, we thoroughly test capabilities of our algorithm imple-
mented in Ariadne by showing dependency of the results on the noise level,
the number of parameters, and the simplification period.

The paper is organized as follows. In Section 2, we give the key ingredients
of the theory used. In Section 3, we give the mathematical setting for obtaining
over-approximations of the reachable sets of input-affine differential inclusion;
we derive the local error; we give formulas for obtaining the error of second
and third orders, and show how to obtain the error of higher-orders. Imple-
mentation aspects are presented in Section 4 and thorough numerical testing
of the algorithm and its comparison to other tools is presented in Section 5.
Finally, we conclude the paper with a summary of the results and a discussion
on future research directions in Section 6.

2 Preliminaries

Below we include relevant results needed to support the novel theory presented.
As already mentioned, differential inclusions can be viewed as time-varying
systems, and time-varying systems be viewed as differential inclusions. The
following theorem states conditions under which the solution sets coincide.

Theorem 1 Let f : X×U → X be continuous where U is a compact separable
metric space and assume that there exists an interval I and an absolutely
continuous x : I → Rn, such that for almost all t ∈ I,

ẋ(t) ∈ f(x(t), U).

Then there exists a Lebesgue measurable u : I → U such that for almost all
t ∈ I, x(·) satisfies

ẋ(t) = f(x(t), u(t)).

The theorem and the proof can be found in [4, Corollary 1.14.1]. For further
work on the theory of differential inclusions see [4,12,42].

The following theorem on existence of solutions of differential inclusions
and its proof can be found in [12]. Also, a version of the theorem and its proof
can be found in [4].

Theorem 2 Let D ⊂ Rn and F : [0, T ]×D ⇒ Rn be an upper semicontinuous
set-valued mapping, with non-empty, compact and convex values. Assume that
‖F (t, x))‖ ≤ c(1 + ‖x‖), for some constant c, is satisfied on [0, T ]. Then for
every x0 ∈ D, there exists an absolutely continuous function x : [0, T ] → Rn,
such that x(t0) = x0 and ẋ(t) ∈ F (t, x(t)) for almost all t ∈ [0, T ].
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In what follows, we shall need the multidimensional mean value theorem,
which can be found in standard textbooks on real analysis, e.g., see [35]. We
use the following form of the theorem:

Theorem 3 Let V ⊂ Rn be open, and suppose that f : Rn → Rm is differen-
tiable on V. If x, x+ h ∈ V and L(x;x+ h) ⊆ V , i.e., the line between x and
x+ h belongs to V ,

f(x+ h)− f(x) =

∫ 1

0

Df(z(s))ds · h

where Df denotes Jacobian matrix of f , z(s) = x + sh, and integration is
understood component-wise.

In this work, we canonically use the supremum norm for the vector norm in
Rn, i.e., for x ∈ Rn, ‖x‖∞ = max{|x1|, ..., |xn|}. For a function f : D ⊂ Rn →
R the norm used is ‖f‖∞ = supx∈D ‖f(x)‖∞. The corresponding matrix norm
instead is

‖Q‖∞ = max
k=1,...,n

{ n∑
i=1

|qki|
}
.

Given a square matrix Q and a matrix norm ‖ · ‖, the logarithmic norm is
defined by

λ(Q) = lim
h→0+

‖I + hQ‖ − 1

h
.

There are explicit formulas for the logarithmic norm for several matrix norms,
see [11,26]. The formula for the logarithmic norm corresponding to the matrix
norm we use is

λ∞(Q) = max
k
{qkk +

∑
i 6=k

|qki|}.

We then take advantage of the following theorem which uses the logarithmic
norm to give an estimate between a solution of a differential equation and an
almost solution.

Theorem 4 Let x(t) satisfy the differential equation ẋ(t) = f(t, x(t)) with
x(t0) = x0, where f is Lipschitz continuous. Suppose that there exist functions
l(t), δ(t) and ρ such that λ(Df(t, z(t))) ≤ l(t) for all z(t) ∈ conv{x(t), y(t)}
and ‖ẏ(t)− f(t, y(t))‖ ≤ δ(t), ‖x(t0)− y(t0)‖ ≤ ρ. Then for t ≥ t0 we have

‖y(t)− x(t)‖ ≤ e
∫ t
t0
l(s)ds

(
ρ+

∫ t

t0

e
−

∫ s
t0
l(r)dr

δ(s)ds

)
.

The theorem is presented in [26].

Numerical computations of reachable sets of time-varying systems require
a rigorous way of computing with sets and functions in an Euclidean space. A
suitable calculus is given by the Taylor Models defined in [34].
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Definition 1 Let f : D ⊂ Rv → R be a function that is (n + 1) times
continuously partially differentiable on an open set containing the domain D.
Let x0 be a point in D and P the n-th order Taylor polynomial of f around
x0. Let I be an interval such that

f(x)− P (x− x0) ∈ I for all x ∈ D

Then the pair (P, I) is an n-th order Taylor Model of f around x0 on D.

In Ariadne, the tool where the algorithm is implemented, the underlying
function calculus is the Taylor Model calculus. A full description of Taylor
Models as used in Ariadne is given in [10].

3 The Analytical Error

Our objective is to provide an over-approximation of the reachable set of the
differential inclusion

ẋ(t) ∈ f(x(t), V ), (5)

where x : R → Rn, V ⊂ Rm is a compact convex set, f is continuous and
f(x, V ) is convex for all x ∈ Rn. However, in this paper, we restrict attention
to input-affine systems in the form of

ẋ(t) = f(x(t)) +

m∑
i=1

gi(x(t))vi(t); x(t0) = x0, (6)

where vi(·) ∈ [−Vi, Vi] is a bounded measurable function for i = 1, . . . ,m and
Vi > 0 for all i.

While Taylor Model calculus already provides us with over-approximations
when performing calculations such as antiderivation, direct application of it to
the system (5) or (6) is not possible since v(·) belongs to an infinite dimensional
space. Instead, we propose to define an auxiliary system, whose time-varying
inputs are finitely parameterized, and to which we can apply Taylor Model
calculus to obtain over-approximations, compute the difference between the
two systems, and add this difference (the analytical error) to achieve an over-
approximation of the reachable set. Moreover, we desire to achieve third-order
error in a single step approximation.

3.1 Single-step approximation

Given an initial set of points X0, define

R(X0, t) = {x(t) | x(·) is a solution of (5) with x(0) ∈ X0} (7)

as the reachable set at time t. Let [0, T ] be an interval of existence of (5). Let
0 = t0, t1, . . . , tn−1, tn = T be a partition of [0, T ], and let hk = tk+1 − tk.
For x ∈ Rn and v(·) ∈ L∞([tk, tk+1];Rm), define φ(xk, v(·)) = x(tk+1) which
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is the solution of (5) at time tk+1 with x(tk) = xk. At each time step we want
to compute an over-approximation Rk+1 to the set

reach(Rk, tk, tk+1) = {φ(xk, v(·)) | xk ∈ Rk and v(·) ∈ L∞([tk, tk+1];Rm)},

where L∞([tk, tk+1];Rm) is the space of essentially bounded measurable func-
tions from interval [tk, tk+1] into Rm. Since L∞ is infinite-dimensional, we aim
to approximate the set of all solutions by restricting the disturbances to a
finite-dimensional space. Let a set of functions Wk ⊂ C([tk, tk+1];Rm) be pa-
rameterized as Wk = {w(ak, ·) | ak ∈ A ⊂ Rp}. For example, Wk can be the
set of all linear functions of the form w(ak, t) = a0k + a1kt. We then need to
find an error bound ε such that

∀ vk ∈ L∞([tk, tk+1];V ), ∃ ak ∈ A s.t. ‖φ(xk, vk(·))− φ(xk, w(ak, ·))‖ ≤ εk.
(8)

Note that we do not need to find explicitly infinitely many ak values. Instead
we need to choose the correct dimension (Rp) and provide bounds to get a
desired error εk.

We define the auxiliary system at time step k by

ẏ(t) = f(y(t), w(ak, t)), yk = y(tk), t ∈ [tk, tk+1]. (9)

We would like to choose functions wk = w(ak, ·) : [tk, tk+1]→ R, depending on
x(tk) and v(·), such that the solution of (9) is an approximation of high order
to the solution of (5). The desired local error is of O(h3) so we can expect the
global error (i.e., cumulative error for the time of computation [0, T ]) to be
roughly of O(h2).

The total local error for a time-step actually consists of two parts. The first
part is the analytical error given by (8). The second part is the numerical error
which is discussed in Section 4. We represent the time-tk over-approximation
of the reachable set

Rk = {hk(s) + [−εk, εk]n | s ∈ [−1,+1]pk},

as a Taylor Model. Here, hk(s) is the polynomial obtained using Taylor Model
calculus, [−εk, εk]n is the interval remainder, and pk is the number of parame-
ters used in the description of Rk. The inclusion R(X0, tk) ⊆ Rk is guaranteed
by this approximation scheme.

3.2 Error derivation

Consider an input-affine system as in (6), and let

– f : Rn → Rn be a Cp function,
– each gi : Rn → Rn be a Cp function,
– vi(·) be a measurable function such that vi(t) ∈ [−Vi,+Vi] for some Vi > 0.
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Here, p ≥ 1 depends on the desired order and will be precisely defined later.
Construct a corresponding auxiliary system as explained in equation (9), i.e.,

ẏ(t) = f(y(t)) +

m∑
i=1

gi(y(t))wi(ak, t); y(tk) = yk, t ∈ [tk, tk+1]. (10)

We assume that wi(t), i = 1, ...,m are continuously differentiable real-valued
functions. The error is computed by looking at the difference between the exact
solution and an approximate solution obtained from the auxiliary system. It
is derived using integration by parts until a desired order (e.g., O(h3)) is
achieved. In what follows, Df denotes the Jacobian matrix, D2f denotes the
Hessian matrix, and λ(·) denotes the logarithmic norm of a matrix defined
in Section 2. For convenience of notation, we write hk = tk+1 − tk, tk+1/2 =

tk + hk/2 = (tk + tk+1)/2, and q̂(t) =
∫ t
tk
q(s) ds.

The single-step error in the difference between xk+1 and yk+1 is derived as
follows. Writing (6) and (10) as integral equations, we obtain:

x(tk+1) = x(tk) +

∫ tk+1

tk

f(x(t)) +

m∑
i=1

gi(x(t))vi(t) dt; (11a)

y(tk+1) = y(tk) +

∫ tk+1

tk

f(y(t)) +
m∑
i=1

gi(y(t))wi(t) dt. (11b)

Without loss of generality, we assume that x(tk) = y(tk) for all k ≥ 0.
To be precise, initially, we assume x(t0) = y(t0). After obtaining an over-
approximation R1 to the solution set at time t1, we use R1 as the set of initial
points of both the original system (5) and the auxiliary one (9) for the next
time step. Thus we have x(t1) = y(t1) ∈ R1. We compute R2, and consider
it to be the set of initial points for both equations at time t2. Proceeding like
this, we have x(tk) = y(tk), for all k ≥ 0. Therefore, the difference between
the two systems in (11) becomes

x(tk+1)− y(tk+1) =

∫ tk+1

tk

f(x(t))− f(y(t)) dt (12a)

+

m∑
i=1

∫ tk+1

tk

gi(x(t))vi(t)− gi(y(t))wi(t) dt. (12b)

Integrating by parts the term (12a), we obtain

(12a) =
[
(t− tk+1/2)

(
f(x(t))− f(y(t))

)]tk+1

tk

−
∫ tk+1

tk

(t− tk+1/2)
d

dt

(
f(x(t))− f(y(t))

)
dt

= (hk/2)
(
f(x(tk+1))− f(y(tk+1))

)
−
∫ tk+1

tk

(t− tk+1/2)
(
Df(x(t))ẋ(t)−Df(y(t))ẏ(t)

)
dt.
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There are two ways that we deal with term (12b). First we rewrite the term
inside the integral as

gi(x(t))vi(t)− gi(y(t))wi(t) = (gi(x(t))− gi(y(t)))wi(t) + gi(x(t)) (vi(t)− wi(t)),

and then integrate by parts the second term to obtain

(12b) =

m∑
i=1

∫ tk+1

tk

(gi(x(t))− gi(y(t)))wi(t) dt

+

m∑
i=1

[
gi(x(t))(v̂i(t)− ŵi(t))

]tk+1

tk
−

m∑
i=1

∫ tk+1

tk

d

dt

(
gi(x(t))

)
(v̂i(t)− ŵi(t)) dt

=

m∑
i=1

∫ tk+1

tk

(gi(x(t))− gi(y(t)))wi(t) dt (13a)

+

m∑
i=1

gi(x(tk+1))(v̂i(tk+1)− ŵi(tk+1)) (13b)

−
m∑
i=1

∫ tk+1

tk

Dgi(x(t)) ẋ(t) (v̂i(t)− ŵi(t)) dt (13c)

The second derivation is obtained just by integrating by parts,

(12b) =

m∑
i=1

[
gi(x(t))v̂i(t)− gi(y(t))ŵi(t)

]tk+1

tk

−
m∑
i=1

∫ tk+1

tk

d

dt

(
gi(x(t))

)
v̂i(t)−

d

dt

(
gi(y(t))

)
ŵi(t) dt

=

m∑
i=1

gi(x(tk+1))v̂i(tk+1)− gi(y(tk+1))ŵi(tk+1) (14a)

−
m∑
i=1

∫ tk+1

tk

Dgi(x(t))v̂i(t)ẋ(t)−Dgi(y(t))ŵi(t)ẏ(t) dt

(14b)

Equations (12a) and (13) can be used to derive second-order local error esti-
mates. By applying the mean value theorem (Theorem 3) we obtain

f(x(tk+1))− f(y(tk+1)) =

∫ 1

0

Df(z(s))ds
(
x(tk+1)− y(tk+1)

)
Hence,

(12a) = (hk/2)

∫ 1

0

Df(z(s))ds
(
x(tk+1)− y(tk+1)

)
(15a)

−
∫ tk+1

tk

(t− tk+1/2)
(
Df(x(t))ẋ(t)−Df(y(t))ẏ(t)

)
dt. (15b)
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Separate the second part of the integrand in (15b) as

Df(x(t)) ẋ(t)−Df(y(t)) ẏ(t) = Df(x(t))
(
ẋ(t)− ẏ(t)

)
(16a)

+
(
Df(x(t))−Df(y(t))

)
ẏ(t). (16b)

The first term of the right-hand-side can be expanded using

ẋ(t)− ẏ(t) = f(x(t))− f(y(t)) +

m∑
i=1

(
gi(x(t))− gi(y(t))

)
wi(t)

+

m∑
i=1

gi(x(t))
(
(vi(t)− wi(t)

)
.

Hence, we obtain

(12a) = (hk/2)

∫ 1

0

Df(z(s))ds (x(tk+1)− y(tk+1)) (17a)

−
∫ tk+1

tk

(t− tk+1/2) Df(x(t)) (f(x(t))− f(y(t))) dt (17b)

−
m∑
i=1

∫ tk+1

tk

(t− tk+1/2) Df(x(t)) (gi(x(t))− gi(y(t)))wi(t) dt (17c)

−
m∑
i=1

∫ tk+1

tk

(t− tk+1/2) Df(x(t)) gi(x(t)) (vi(t)− wi(t)) dt, (17d)

−
∫ tk+1

tk

(t− tk+1/2) (Df(x(t))−Df(y(t))) ẏ(t)dt (17e)

where (17a) is (15a), (17b-d) comes from (16a), and (17e) comes from (16b).
Note that for any C1-function h(x) we can write

|h(x(t))− h(y(t))| ≤ ‖Dh(z(t))‖ · |x(t)− y(t)|

where z(t) ∈ conv{x(t), y(t)}, i.e. the closure of the convex hull of {x(t), y(t)}.
This will allow to obtain third-order bounds for terms (17 b,c,e). In order to
obtain a third-order estimate for term (17d), a further integration by parts is
needed. We obtain:

(17d) = −
m∑
i=1

[
Df(x(t)) gi(x(t))

∫ t

tk

(s− tk+1/2)(vi(s)− wi(s))ds
]tk+1

tk

+

∫ tk+1

tk

(
D2f(x(t)) gi(x(t)) +Df(x(t))Dgi(x(t))

)
ẋ(t)∫ t

tk

(s− tk+1/2)(vi(s)− wi(s))ds dt.
(18d)
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Using a derivation similar to the one used for (17), and again the mean value
theorem and integration by parts, we obtain

(14a) + (14b) =

m∑
i=1

∫ 1

0

Dgi(z(s))ds
(
x(tk+1)− y(tk+1)

)
ŵi(tk+1) (19a)

+

m∑
i=1

gi(xk+1)
(
v̂i(tk+1)− ŵi(tk+1)

)
(19b)

−
m∑
i=1

∫ tk+1

tk

(
Dgi(x(t))−Dgi(y(t))

)
ẏ(t) ŵi(t)dt (19c)

−
m∑
i=1

∫ tk+1

tk

Dgi(x(t))
(
f(x(t))− f(y(t))

)
ŵi(t) dt (19d)

−
m∑
i=1

∫ tk+1

tk

Dgi(x(t)) f(x(t))
(
v̂i(t)− ŵi(t)

)
(19e)

−
m∑
i=1

m∑
j=1

∫ tk+1

tk

Dgi(x(t))
(
gj(x(t))− gj(y(t))

)
wj(t) ŵi(t) dt (19f)

−
m∑
i=1

m∑
j=1

∫ tk+1

tk

Dgi(x(t)) gj(x(t))
(
vj(t)v̂i(t)− wj(t)ŵi(t)

)
dt. (19g)

The term (19e) can be further integrated by parts to obtain

(19e) = −
m∑
i=1

[
Dgi(x(t)) f(x(t))

∫ t

tk

(v̂(s)− ŵ(s))ds
]tk+1

tk

+

m∑
i=1

∫ tk+1

tk

(
D2gi(x(t)) f(x(t)) +Dgi(x(t))Df(x(t))

)
ẋ(t) (ˆ̂vi(t)− ˆ̂wi(t)) dt

(20e)

and the term (19g) to obtain

(19g) = −
m∑
i=1

m∑
j=1

[
Dgi(x(t)) gj(x(t))

∫ t

tk

(
vj(s)v̂i(s)− wj(s)ŵi(s)

)
ds
]

+

m∑
i=1

m∑
j=1

∫ tk+1

tk

(
D2gi(x(t)) gj(x(t)) +Dgi(x(t))Dgj(x(t))

)
ẋ(t)

∫ t

tk

(
vj(s)v̂i(s)− wj(s)ŵi(s)

)
ds dt.

(20g)

Equations (17-20) can be used to derive third-order local error estimates.
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3.3 Error Formulas

We proceed to give formulas for the local error having different assumptions on
functions f(·), gi(·) and wi(·). We present necessary and sufficient conditions
for obtaining local errors of O(h), O(h2), O(h3), and give a methodology for
obtaining even higher-order errors. Moreover, we give formulas for the error
calculation in several cases.

Assume that we have a bounding box B on the solutions of (6) and (10)
for all t ∈ [0, T ]. This is easily achievable using the Euler Method on the initial
set subject to the system dynamics. Then, we can obtain constants r, Vi, K,
Ki, L, Li, H, Λ such that

|vi(t)| ≤ Vi, |wi(t)| ≤ rVi, ‖f(z(t))‖ ≤ K, ‖gi(z(t))‖ ≤ Ki, λ(Df(z(t))) ≤ Λ,

‖Df(z(t))‖ ≤ L, ‖Dgi(z(t))‖ ≤ Li, ‖D2f(z(t))‖ ≤ H, ‖D2gi(z(t))‖ ≤ Hi,

(21)
for each i = 1, ...,m, and for all t ∈ [0, T ], and z(·) ∈ B. We also set

K ′ =

m∑
i=1

ViKi, L′ =

m∑
i=1

Vi Li H ′ =

m∑
i=1

ViHi.

When possible we estimate the difference of the solutions using the Loga-
rithmic norm rather than the Lipschitz constant. To obtain the actual error
value, we replace variables and functions by their bounds from equation (21).
In each of the cases, wi(a, ·) is a real-valued finitely-parameterized function
with a ∈ A ⊂ RN . In general, the number of parameters N depends on the
number of inputs and the order of error desired. In what follows, we denote
ϕ(x) = (ex − 1)/x.

3.3.1 Local error of O(h)

Theorem 5 For any k ≥ 0, and all i = 1, ...,m, if

– f(·) is a Lipschitz continuous vector function,
– gi(·) are continuous vector functions, and
– wi(t) = 0 on [tk, tk+1],

then the local error is of O(h). Moreover, a formula for the error is:∣∣x(tk+1)− y(tk+1)
∣∣ ≤ hkK ′ ϕ(Λhk). (22)

Alternatively, we can use

∣∣x(tk+1)− y(tk+1)
∣∣ ≤ hk (2K +K ′

)
. (23)
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Proof Since wi(t) = 0, we have ẏ(t) = f(y(t)). Using the bounds given in (21),
we can take l(t) = Λ in Theorem 4 and since∥∥∥∥ẏ(t)−

(
f(y(t)) +

m∑
i=1

gi(y(t))vi(t)
)∥∥∥∥ =

∥∥∥∥ m∑
i=1

gi(y(t))vi(t))

∥∥∥∥ ≤ m∑
i=1

Ki Vi = K ′,

we can take δ(t) = K ′. Hence the formula (22) is obtained directly from
Theorem 4. Note that ϕ(Λhk) = 1 +Λhk/2 + · · · is O(1), so the local error is
of O(h). Equation (23) can be obtained by noting that supt∈[tk,tk+1]

||f(x(t))−
f(y(t))|| ≤ 2K. �

3.3.2 Local error of O(h2)

Theorem 6 For any k ≥ 0, and all i = 1, ...,m, if

– f(·), gi(·) are C1 vector functions, and
– wi(·) are bounded measurable functions defined on [tk, tk+1] which satisfy∫ tk+1

tk

vi(t)− wi(t) dt = 0, (24)

then an error of O(h2) is obtained.

Proof To show that the error is of O(h2), we use equations (12,13). The equa-
tion (12a) is in the desired form, i.e., of O(h2), since we can write∣∣∣∣∫ tk+1

tk

f(x(t))− f(y(t)) dt

∣∣∣∣ ≤ hL supt∈[tk,tk+1]
‖x(t)− y(t)‖,

and supt∈(tk,tk+1)
‖x(t) − y(t)‖ is of O(h) by Theorem 4. Similarly, equa-

tions (13a) and (13c) are of O(h2). Note that the equation (13b) is zero due
to (24). �

In order to be able to compute the errors, we need the bounds on the wi(·)
functions. In particular, we can restrict wi(·) to belong to a certain class of
functions, such as polynomial or step functions.

Theorem 7 For any k ≥ 0, and all i = 1, ...,m, if

– f(·), gi(·) are C1 vector functions, and

– wi(t) are real-valued, constant functions defined on [tk, tk+1] by wi = 1
hk

∫ tk+1

tk
vi(t)dt,

then a formula for calculation of the local error is given by

‖x(tk+1)− y(tk+1)‖ ≤ h2k ((K +K ′)L′/3 + 2K ′ (L+ L′) ϕ(Λhk)) . (25)
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Before we prove the theorem, note that it is straightforward to show that
with the chosen wi(t), |wi(t)| ≤ Vi and |v̂i(t)−ŵi(t)| ≤ 2Vi hk for t ∈ [tk, tk+1].
However, we can get a slightly better bound |v̂i(t)− ŵi(t)| ≤ Vi hk/2 by con-
sidering the following derivation:

Without loss of generality, assume t ∈ [0, h], and let

ai(t) =
1

t

∫ t

0

vi(s) ds, bi(t) =
1

h− t

∫ h

t

vi(s) ds

and define
wi(t) = (t ai(t) + (h− t) bi(t))/h.

Then, wi = wi(t) is constant for all t ∈ [0, h]. Notice that v̂i(t) = tai(t) and
ŵi(t) = (t/h)(tai(t) + (h− t)bi(t)). Hence, we have

v̂i(t)− ŵi(t) = t(h− t)(ai(t)− bi(t))/h,
|v̂i(t)− ŵi(t)| = t(h− t)|ai(t)− bi(t)|/h ≤ Vi h/2.

Additionally, we can prove that∫ tk+1

tk

|v̂i(t)− ŵi(t)| dt ≤ Vi h2k/3. (26)

Proof To derive (25), we obtain ‖x(tk+1) − y(tk+1)‖ from equations (12a)
and (13). Using the bounds given in (21), it is immediate that ||ẋ|| ≤ K +∑m
i=1 ViKi. Take z(t) to satisfy the differential equation ż(t) = f(z(t)). From

Theorem 4, we have

‖x(t)− z(t)‖, ‖y(t)− z(t)‖ ≤ hk
( m∑
i=1

Ki Vi

)
ϕ(Λhk)

and hence

‖x(t)− y(t)‖ ≤ 2hk

( m∑
i=1

Ki Vi

)
ϕ(Λhk)

for t ∈ [tk, tk+1]. Using the bound in (26) and combining the bounds for the
norms of

(12a) ≤
∫ tk+1

tk

L

(
2hk

( m∑
i=1

Ki Vi

)
ϕ(Λhk)

)
dt = 2h2k LK

′ϕ(Λhk)

(13a) ≤
∫ tk+1

tk

( m∑
i=1

ViLi

)(
2hk

( m∑
i=1

Ki Vi

)
ϕ(Λhk)

)
dt = 2h2k L

′K ′ ϕ(Λhk)

(13b) = 0

(13c) ≤
∫ tk+1

tk

m∑
i=1

Li

(
K +

m∑
j=1

VjKj

)∣∣v̂i(t)− ŵi(t)∣∣ dt ≤ h2k
3
L′(K +K ′)

we get the desired formula (25). �
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Remark 1 Note that as Λ → 0, then eΛh−1
Λh → 1. This is also consistent with

Theorem 4. In fact, if Λ = 0, we get

‖x(t)− y(t)‖ ≤ 2hk

( m∑
i=1

Ki Vi

)
and therefore,

‖x(tk+1)− y(tk+1)‖ ≤ h2k
(
(K +K ′)L′/3 + 2K ′ (L+ L′)

)
, (27)

which is still of O(h2). Further, we will not give explicit formulas for the error
when Λ = 0.

Remark 2 Computation of the local error is complicated by the fact that
|vi(t)−wi(t)| is not uniformly small. This means that the terms g(x)(vi−wi)
must be integrated over a complete time step in order to be able to use the
fact that

∫ tk+1

tk
vi(t) dt =

∫ tk+1

tk
wi(t) dt, and this must be done without first

taking norms inside the integral. As a result, we cannot apply results on the
logarithmic norm exactly directly. Instead, we “bootstrap” the procedure by
applying a first-order estimate for ‖x(t)− y(t)‖ valid for any t ∈ [tk, tk+1].

3.3.3 Local error O(h2) +O(h3)

We can attempt to improve the error bounds by allowing wi(t) to have two
independent parameters. In the general case, we shall see that this gives rise
to a local error estimate containing terms of O(h2) and O(h3), rather than the
anticipated pure O(h3) error.
We seek two-parameter wi(t) functions which satisfy the following pair of
equations ∫ tk+1

tk

vi(t)− wi(t) dt = 0; (28a)∫ tk+1

tk

(t− tk+1/2) (vi(t)− wi(t)) dt = 0. (28b)

Among the various possibilities, we found that the following three representa-
tions for wi(t) have good theoretical properties:

a) Step-function representation in the form:

wi(t) =

{
ai,0 if tk ≤ t < tk+1/2

ai,1 if tk+1/2 ≤ t ≤ tk+1,

where tk+1/2 = tk + h/2.
b) Affine function given as:

wi(t) = ai,0 + ai,1(t− tk+1/2)/hk
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c) Sinusoidal function in the form of:

wi(t) = ai,0 + ai,1 sin
(
γ (t− tk+1/2)/h

)
for γ = 4.1632.

To obtain appropriate sets of input functions wi(t), we aim to match the
moments of vi(t):

µi,0 = 1
h

∫ tk+1

tk
vi(t) dt;

µi,1 = 4
h2

∫ tk+1

tk
(t− tk+1/2)vi(t) dt.

These satisfy |µi,0| ≤ Vi and |µi,1| ≤ (1− µ2
i,0/V

2
i )Vi, so they can be parame-

terized as

µi,0 = ci,0,

µi,1 = (1− c2i,0/V 2
i )ci,1

for |ci,0|, |ci,1| ≤ Vi. If wi(·) are step-functions in the form presented in a), then
ai,0 = µi,0−µi,1 and ai,1 = µi,0 +µi,1. To obtain the exact set for parameters
ai,0, ai,1 take

vi(t) =

{
−Vi for t ∈ [tk, tk + τ)

+Vi for t ∈ [tk + τ, tk+1].

Then we get

µi,0 = (1− 2τ/h)Vi

µi,1 = (4τ/h− 4τ2/h2)Vi

and hence

ai,0 = (1− 6τ/h+ 4τ2/h2)Vi

ai,1 = (1 + 2τ/h− 4τ2/h2)Vi,

for which we find

|ai,0|, |ai,1| ≤ 5Vi/4 and |wi(t)| ≤ 5Vi/4.

We can further re-parameterize ai,0 and ai,1 by taking

ai,0 = Vi
(
ci,0 − (1− c2i,0)ci,1

)
ai,1 = Vi

(
ci,0 + (1− c2i,0)ci,1

)
,

where ci,0, ci,1 ∈ [−Vi,+Vi]. This yields precisely the parameter values corre-
sponding to an actual input vi(t).

If wi(·) are affine functions, then solving (28) yields ai,0 = µi,0 and ai,1 =
3µi,1. To provide exact bounds for wi(t), for a given ai,0, we can maximize ai,1
which gives ai,1 = 3(1− a2i,0/V 2

i ) yielding the constraint

a2i,0 + |ai,1|/3 ≤ 1.
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Re-parameterizing, we can set ai,0 = ci,0 and ai,1 = 3(1 − c2i,0/V 2
i )ci,1 with

ci,0, ci,1 ∈ [−Vi,+Vi], which then gives

wi(t) = ci,0 + 3(1− c2i,0/V 2
i )ci,1 (t− tk+1/2)/hk. (29)

Hence,

|ai,0| ≤ Vi, |ai,1| ≤ 3Vi(1− (ai,0/Vi)
2) and |wi(t)| ≤ 5Vi/3. (30)

Alternatively, if wi(t) are sinusoidal functions in the form given in c), then
ai,0 = µi,0 and ai,1 = p(γ)µi,1 where

p(2γ) = 1
2γ/

(
sin(γ)/γ − cos(γ)

)
,

and the maximum value of |wi| is (p(γ) + 1/4p(γ))Vi. To obtain the smallest
possible maximum value we minimize p(γ)+1/4p(γ) which yields γ ≈ 4.163152
with p(γ) ≈ 1.146311, p(γ) + 1/4p(γ) ≈ 1.364402. Hence

wi(t) = ci,0 + (1− c2i,0/V 2
i ) ci,1 sin(4.1632(t− tk+1/2));

|ci,0|, |ci,1| ≤ Vi; |wi| ≤ 1.3645Vi.

In all cases a-c) we see that |wi| ≤ r Vi, where r is a constant obtained
depending on the choice of the wi(·) functions. The bound for the local error
is then given by the following theorem:

Theorem 8 For any k ≥ 0, and all i = 1, ...,m, if

– f(·) is a C2 vector function,
– gi(·) are non-constant C2 functions, and
– wi(t) are real-valued functions defined on [tk, tk+1] which satisfy equa-

tions (28) with |wi(t)| ≤ r Vi for some constant r ∈ R,

then an error of O(h2) is obtained. The formula for the error is given by

(1− L(hk/2)− hk r L′) ‖x(tk+1)− y(tk+1)‖ ≤ (h2k/4)(1 + r2)L′K ′

+ (h3k/4) (1 + r)K ′
(
(2rH ′ +H) (K + rK ′) + L2 +

(
3rL+ 2r2L′

)
L′
)
ϕ(Λhk)

+ (h3k/24)(1 + r) (K +K ′) (3(HK ′ + LL′) + 4(H ′K + LL′)) .

Proof With the assumptions of the theorem, we can improve the terms (17d)
and (19e) such that they become (18d) and (20e), which are of O(h3). In
addition, we use

‖ẋ(t)‖ ≤ K +

m∑
i=1

Ki Vi = K +K ′

‖ẏ(t)‖ ≤ K + r

m∑
i=1

Ki Vi = K + rK ′

‖x(t)− y(t)‖ ≤ hk (1 + r)

(
m∑
i=1

Ki Vi

)
ϕ(Λhk) = hk (1 + r)K ′ ϕ(Λhk).
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Hence, using the bounds introduced at the beginning of the section we can
estimate

|ŵi(t)| ≤ |
∫ t

tk

wi(s)ds| ≤ r Vi (t− tk)

(17a) ≤ hk
2
L‖x(tk+1)− y(tk+1)‖

(17b) ≤ h3k
4

(1 + r)K ′ L2 e
Λhk − 1

Λhk

(17c) ≤ h3k
4
r(1 + r)K ′ LL′

eΛhk − 1

Λhk

(17d)→ (18d) ≤ h3k
8

(1 + r) (HK ′ + LL′) (K +K ′)

(17e) ≤ h3k
4

(1 + r)K ′H (K + rK ′)
eΛhk − 1

Λhk
(19a) ≤ hk r L′ ‖x(tk+1)− y(tk+1)‖
(19b) = 0

(19c) ≤ h3k
2

(1 + r)K ′ r H ′(K + rK ′)
eΛhk − 1

Λhk

(19d) ≤ h3k
2
r(1 + r)K ′ LL′

eΛhk − 1

Λhk

(19e)→ (20e) ≤ h3k
6

(1 + r) (H ′K + LL′) (K +K ′)

(19f) ≤ h3k
2
r2(1 + r)K ′ (L′)2

eΛhk − 1

Λhk

(19g) ≤ h2k
2

(1 + r2)K ′ L′

Summing all the terms and rearranging gives the desired formula for the local
error. �

We now show that with the assumptions of the theorem we cannot in
general obtain an error of O(h3). Specifically, we assume that wi(t) are two-
parameter functions satisfying∫ tk+1

tk

vi(t)− wi(t) dt =

∫ tk+1

tk

(t− tk+1/2) (vi(t)− wi(t)) dt = 0.

The following counterexample gives a system for which only O(h2) local error
is possible.

Example 1 Consider the following input-affine system which satisfies the as-
sumption in Theorem 8:

ẋ1 = x2 + v1 + x1v2; ẋ2 = x1 + v2; x(tk) = xk.
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Take inputs

v1(t) = sin

(
2π

hk
(t− tk)

)
, v2(t) = cos

(
2π

hk
(t− tk)

)
.

Using (28), we get w2(t) = 0, and w1(t) is nonzero (w1(t) can be explicitly
calculated for all three functions but we do not need it), hence the auxiliary
system looks like

ẏ1 = y2 + w1; ẏ2 = y1

As shown in the previous section, the only term which might not have order
h3k is the term in (19g) which is reduced to

2∑
i=1

∫ tk+1

tk

Dg2(x(t))gi(x(t)) vi(t)v̂2(t)dt,

since Dg1 = 0. When i = 2, the term above is of O(h3) since 1
2
d
dt (v̂

2
i (t)) =

vi(t)v̂i(t) and we can integrate by parts once more. Therefore, we are left with∫ tk+1

tk

Dg2(x(t))g1(x(t)) v1(t)v̂2(t)dt = −h
2
k

4π
[1 0]T ,

a term of O(h2).

3.3.4 Local error of O(h3)

We showed that for a general input-affine system, a local error of order O(h3)
cannot be obtained using two-parameter approximate inputs wi(a0,i, a1,i, t).
However if, in addition, we assume that gi(·) are constant functions or if we
have a single input, then we can obtain a local error of O(h3). If gi(·) are
constant functions, then the error calculation is equivalent to the one of an
even simpler case, the so called additive noise case. The equation is then given
by

ẋ(t) = f(x(t)) + v(t). (31)

Here, v(t) = (v1(t), ..., vn(t)) is vector-valued.

Corollary 1 For any k ≥ 0,

– if the system has additive noise,
– f(·) is a C2 function, and
– wi(t) are real-valued functions defined on [tk, tk+1] which satisfy equa-

tions (28) with |wi(t)| ≤ r Vi, for all i = 1, ..., n and some constant r ∈ R

then an error of O(h3) is obtained:(
1− (hk/2)L

)
‖x(tk+1)− y(tk+1)‖ ≤ h3k

8
(1 + r)K ′H (K +K ′)

+
h3k
4

(1 + r)K ′
(
L2 + H (K + rK ′)

)
ϕ(Λhk).

(32)
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The formula for the error in the additive noise case is simplified because
L′ = H ′ = 0. If we write ||v(t)|| = K ′, then the result follows directly from
Theorem 8.

Corollary 2 For any k ≥ 0, if

– the input-affine system has a single input, i.e., m = 1 in (6)
– f(·) and g(·) are C2 functions, and
– wi(t) are real-valued functions defined on [tk, tk+1] which satisfy equa-

tions (28) with |wi(t)| ≤ r Vi, for all i = 1, ..., n and some constant r ∈ R

then an error of O(h3) is obtained. The formula for the local error is given by

(1− L(hk/2)− hk r L′) ‖x(tk+1)− y(tk+1)‖ ≤
(h3k/4) (1 + r)K ′

(
(2rH ′ +H) (K + rK ′) + L2 +

(
3rL+ 2r2L′

)
L′
)
ϕ(Λhk)

+ (h3k/24) (K +K ′) ((1 + r)(3(HK ′ + LL′) + 4(H ′K + LL′))

+8(1 + r2) (H ′K ′ + (L′)2)
)
.

Proof The result follows since the only term which is not O(h3) in (17,19)
is (19g). In the one-input case, this simplifies to∫ tk+1

tk

Dg(x(t)) g(x(t))
(
v̂(t) v(t)− ŵ(t)w(t)

)
dt.

However, we can integrate by parts to obtain

(19g) =
[
Dg(x(t)) g(x(t))

(
v̂(t)2 − ŵ(t)2

)]tk+1

tk

−
∫ tk+1

tk

D
(
Dg(x(t)) g(x(t))

)
ẋ(t)

(
v̂(t)2 − ŵ(t)2

)
dt.

The first term vanishes since v̂(tk+1) = ŵ(tk+1), and the second is O(h3) since
v̂(t) and ŵ(t) are O(h). Taking all the bounds as in Theorem 8, the formula
is easily obtained. �

Observing the error given by equations (17) and (19), we see that if in addition
to satisfying the equations given in (28), the functions wi(·) also satisfy∫ tk+1

tk

vi(t)v̂j(t)− wi(t)ŵj(t) dt = 0, (33)

then we can get an error of O(h3). The question remains as to whether we
can find functions wi(·) that satisfy the conditions (28) and (33). Since, in
this case, the functions wi(·) cannot be computed independently any more,
the number of parameters of each wi(·) will depend on the number of inputs.

Theorem 9 For any k ≥ 0, if

– f(·), gi(·) are C2 real vector functions, and
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– wi(ai,0, ..., ai,p−1, t) are real-valued, defined on [tk, tk+1], and satisfy

∫ tk+1

tk

vi(t)− wi(t) dt = 0∫ tk+1

tk

(t− tk+1/2) (vi(t)− wi(t)) dt = 0∫ tk+1

tk

vi(t)v̂j(t)− wi(t)ŵj(t) dt = 0,

(34)

for all i, j = 1, ...,m, then an error of O(h3) can be obtained. The number of
parameters p in at least one wi(·) must satisfy p ≥ (m+ 3)/2.

Proof If we can find wi(t) functions that satisfy the above conditions, then
it is obvious that the only remaining O(h2) term (19g) can be integrated by
parts once more in order to give a term of O(h3). This follows from Theorem
6, Corollary 2 and the formulae (20g) in Section 3.2.

Now, if m = 1, see Corollary 2. To see that we can find the desired functions
wi(·) for m ≥ 2, notice that the system of equations (34) consists of at most
m+m+m(m−1)/2 = m(m+3)/2 independent equations. The third equation
in (34) has at most m(m − 1)/2 independent equations necessary to be zero,
since for i = j we have

∫ tk+1

tk

vi(t)v̂i(t)− wi(t)ŵi(t) dt = (1/2)[v̂2i (tk+1)− ŵ2
i (tk+1)],

and therefore we can integrate by parts once more to get an error of O(h3).
When j > i integration by parts gives

∫ tk+1

tk

vi(t)v̂j(t)− wi(t)ŵj(t) dt =
[
v̂i(t) v̂j(t)− ŵi(t)ŵj(t)

]tk+1

tk

−
∫ tk+1

tk

v̂i(t)vj(t)− ŵi(t)wj(t) dt

where the first term vanishes since v̂i(tk+1) = ŵi(tk+1). Thus, it is sufficient
to assume that j < i in (34). In order to solve it, we set the same number of
parameters as the number of equations. Then it is not hard to see that at least
one wi(·) must have d(m+ 3)/2e parameters. �

In Table 1, we present the total number of parameters needed depending
on the number of inputs in the system. In addition, if wi(·) are polynomials,
we highlight the minimal degree required for at least one wi(·) so that a local
error of O(h3) is obtained.
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# of inputs # of equations = highest degree d

= total # of parameters = of a wi =

m m(m+ 3)/2 d(m+ 1)/2e

1 2 1

2 5 2

3 9 2

4 14 3

5 20 3

6 27 4

10 65 5

Table 1 Total number of parameters needed depending on the number of inputs m in the
system. If wi(·) are polynomials, the highest degree needed for at least one wi(·) is given.

3.3.5 Higher Order Local Error

It is possible to generalize the approach used to achieve O(h3) local error.
With additional smoothness requirements on the functions f(·) and gi(·), we
can get even higher-order local errors. In order to simplify the notation, we
set g0 = f and v0 = 1. Then the input-affine system (6) becomes

ẋ(t) =

m∑
i=0

gi(x(t))vi(t).

Let gi ∈ Cp for all i = 0, ...,m, and denote by

ẏ(t) =

m∑
i=0

gi(y(t))wi(ai, t)

the corresponding auxiliary system. The local error of O(hp+1) can be ob-
tained if wi(ai, t) are finitely parameterized, ai = (ai,0, ..., ai,p) with p being
sufficiently large, and they also satisfy

∫ tk+1

tk

vi(t) dt =

∫ tk+1

tk

wi(t) dt (35a)∫ tk+1

tk

vj(t)

∫ t

tk

vi(s) ds dt =

∫ tk+1

tk

wj(t)

∫ t

tk

wi(s)ds dt (35b)∫ tk+1

tk

vk(t)

∫ t

tk

vj(s)

∫ s

tk

vi(r)dr ds dt =

∫ tk+1

tk

wk(t)

∫ t

tk

wj(s)

∫ s

tk

wi(r)dr ds dt

(35c)
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tk

vir (sr)

∫ sr

tk

vir−1(sr−1) · · ·
∫ s2

tk

vi1(s1) ds1 · · · dsr−1 dsr =∫ tk+1

tk

wir (sr)

∫ sr

tk

wir−1
(sr−1) · · ·

∫ s2

tk

wi1(s1) ds1 · · · dsr−1 dsr

(35d)

In (35a), it is sufficient to take i ≥ 1. In (35b) we can restrict to i ≥ j + 1 as
explained in the previous subsection. Next, we can simplify equation (35c), to
get ∫ tk+1

tk

vk(t)v̂j(t)v̂i(t) dt =

∫ tk+1

tk

wk(t)ŵj(t)ŵi(t) dt

and consider the equations for all i, j, k ≥ 0, such that j ≤ i. Note that
for the first two equalities above we need m + C(m + 1, 2) equations. Here,
C(n,m) = n!/(m! (n − m)!) denotes the formula for combinations. For the
third one, we need additional m+3C(m+2, 3) equations, which in total gives
(m/2)(m2+4m+7). In general, it is not easy to see the formula for the number
of equations, but if O(h4) is desired, the number of parameters needed for at
least one wi(·) is (m/2)(m2 + 4m+ 7).

4 Implementation

The algorithm used for computing the reachable set of (4) is:

Algorithm 10 Let Rk = {hk(s) + [−εk, εk]n | s ∈ [−1,+1]pk} be an over-
approximation of the set R(X0, tk). To compute an over-approximation Rk+1

of R(X0, tk+1):

1. Create the auxiliary system

ẏ(t) = f(y(t), w(ak, t)), x(tk) = xk = yk, t ∈ [tk, tk+1], yk ∈ Rk, ak ∈ A.

2. Compute the necessary bounds as presented at the beginning of Section 3.2
3. Compute the uniform error bound εk which represents the distance between

the two solutions, i.e., ‖φ(xk, vk(·))− φ(xk, w(ak, ·))‖ ≤ εk
4. Compute the flow of the auxiliary system via Taylor Model integration, i.e.,

obtain (h(sk)+[−εk, εk]n, ak) that represents an over-approximation of the
solution set (see Section 2 on computation in Ariadne).

5. Compute the set Rk+1 which over-approximates R(x0, tk+1) as Rk+1 =
{(h(sk) + [−εk, εk]n, ak) + [−εk, εk]n}, i.e., the Taylor Model obtained in
step 5 ± the analytical error obtained in step 3.

6. Simplify parameters (if necessary).

Step 4 of the algorithm produces an approximated flow φ(xk, w(ak, ·)) which
is guaranteed to be valid for all xk ∈ Rk. In practice, we cannot represent φ
exactly, and instead use a Taylor model approximation with a guaranteed error
bound. In Step 1 we have yk = xk since the over-approximated solution at the
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previous step is taken as the exact set to start from. In Step 3, we compute
the uniform error bound εk and in Step 5 we add it to the computed flow to
obtain an over-approximation, Rk+1 = {(h(sk) + [−εk, εk]n, ak) + [−εk, εk]n}.
Step 6 is crucial for the efficiency and accuracy of the algorithm, as explained
below.

Note that our method only guarantees a local error of high order at the
sequence of rational points {tk} which is a priori chosen. If one is trying to
estimate the error at times tk < t < tk+1 for any k along a particular solution,
a different formula should be used such as a logarithmic norm estimate based
on Theorem 4.

According to the theoretical framework, the approximation error is reduced
by decreasing the step size h. However, when an actual implementation is con-
cerned, other numerical aspects contribute to the quality of representation
of the sets and the resulting over-approximations. In particular, the computa-
tional error, i.e., the error due to implementation of the algorithm in Ariadne,
contributes towards over-approximation of the solution set in two ways. One
is due to the Taylor Model calculus used and the other due to simplification
of the parameters.

In order to prevent the potential blow-up of the number of polynomial
terms used in the Taylor Model, small and/or high-order terms must be
“swept” into the uniform error bound e. For this purpose, Ariadne intro-
duces a sweep threshold σthr constant that represents the minimum coefficient
that a term needs in order to avoid being swept into e. As already discussed,
an additional contribution to e is the error originating from the inputs approx-
imation, which is added to the model for each variable. Therefore, over time,
e becomes relatively large, ultimately causing the bounds of the represented
set to diverge; to address this issue, we need to extract periodically a new pa-
rameter for each variable, thus originating n new independent parameters. In
particular, our experience with the implementation showed that significantly
more accurate results are obtained by parameter extraction at each evolution
step, introducing n new parameters at each step. At the same time, each step
of the proposed algorithm introduces `m additional parameters into the de-
scription of the flow, where ` is the number of parameters required for each
wi,k: ` = 0 for the zero case, ` = 1 for the constant case, and ` = 2 for the
affine, sinusoidal and piecewise constant cases. Summarizing, after k steps we
end up introducing k(n+ `m) new parameters.

Therefore it is apparent that a critical requirement for the feasibility of the
algorithm is to simplify periodically the representation of the reached sets. For
the purposes of this paper, we rely on the following basic simplification policy:
after a number of steps Ns we keep a number of parameters equal to a multiple
βs of the parameters introduced between two simplifications. To decide which
parameters to keep after the simplification, we sum the coefficients of the
terms where a parameter is present: the parameters with the lowest sum are
considered to have the least impact on the set representation and their terms
are simplified into e. Increasing βs increases the average number of parameters
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during evolution, while increasing Ns also affects the variance of such number
since the parameters are allowed to increase in a larger number of steps.

5 Numerical Results

In this Section we present the results of the implementation of our approach
within Ariadne, followed by a comparison with Flow* and CORA 2018.
Before that, the first Subsection explains the evaluation criteria, followed by
the values chosen for the numerical parameters of the three tools and by the
description of the systems to be used for evaluation.

5.1 Evaluation criteria

In order to evaluate the quality of the reachable set of a system, we introduce
the volume score (from here on simply score) ΣV as

ΣV =
1

n
√
Πn
i=1 |Bi|

(36)

where B is the bounding box of a set. Given a set, the formula over-approxi-
mates it into a box for simplicity, evaluates its volume and normalizes on the
number of variables. In particular, halving the set on each dimension yields
twice the score. Without extra notation, we evaluate ΣV on the final set of
evolution to measure the quality of the whole trace. It must be noted that since
a bounding box returns an over-approximation, this measure is not entirely
reliable when used for comparisons: given two different sets with equal exact
bounds, a slightly larger box may be obtained for the set having the more
complex representation. Still, it is an intuitive and affordable measure that
can be used across tools with different internal representations.

In addition to the volume score, we evaluate the performance in terms of
execution time tx in seconds. In particular, the execution times are obtained
using a macOS 10.14.6 laptop with an Intel Core i7-6920HQ processor, using
AppleClang 10.0.1 as a compiler in the case of Ariadne and Flow* executa-
bles, or running on MATLAB 2018b in the case of CORA.

Finally, all the score and execution time values in the following are rounded
to the nearest least significant digit.

5.2 Tool parameters

In the following we provide the numerical parameters used for evaluation in the
benchmark. For simplicity we used fixed reasonable values for Ariadne. For
Flow* and CORA we collaborated with the developers in order to identify
good values. In the case of Flow*, such values are fixed for all systems,
while for CORA they are specified based on the system; in this subsection
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we provide the default values, while the overridden ones are given in the next
subsection.

5.2.1 Ariadne

– Sweep threshold σthr : 10−8

– Number of steps between simplifications Ns: 12
– Number of parameters to be kept after a simplification βs: 6.

Please note that while a fixed maximum polynomial order can be enforced in
Ariadne we focused on using only a fixed sweep threshold. This choice stems
from the large number of parameters involved, whose cross-products yield
terms with a large order. Preliminary experimental evaluation showed that
discarding polynomial terms with a small coefficient returns a better quality
vs efficiency figure than discarding polynomial terms with high order (or using
a combination of both strategies). Since Ns and βs have been introduced in this
paper in order to handle the representation of sets in the presence of differential
inclusions, in this section we will also show how varying their values affects
the quality of such representation.

5.2.2 Flow*

– Mantissa precision: 53 bits
– Taylor model fixed order: 6
– Cutoff threshold: 10−10

– Remainder estimation: 0.1.

5.2.3 CORA

– zonotopeOrder: 100
– tensorOrder: 3
– errorOrder: 25
– intermediateOrder: 100
– taylorTerms: 5
– advancedLinErrorComp: 0
– reductionInterval: inf
– reductionTechnique: ’girard’
– maxError: as large as possible to avoid splitting

5.3 Benchmark Suite

We now present ten different systems taken from the literature, with varying
nonlinearity. In particular, two of them have been used when presenting time-
varying uncertainties in Flow*.

Table 2 summarizes the properties of these systems and the experiments
performed. Along with the reference to the literature, we tabulate the number
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Name Alias Ref n m Ō + h Te steps

Higgins-Sel’kov HS [8] 2 3 3 N 1/50 10 500

Chemical Reactor CR [28] 4 3 2 N 1/16 10 160

Lotka-Volterra LV [28] 2 2 2 N 1/50 10 500

Jet Engine JE [7] 2 2 2 Y 1/50 5 250

PI Controller PI [7] 2 1 2 Y 1/32 5 160

Jerk Eq. 21 J21 [44] 3 1 5/3 N 1/16 10 160

Lorenz Attractor LA [45] 3 1 5/3 N 1/256 1 256

Rössler Attractor RA [45] 3 1 5/3 Y 1/128 12 1536

Jerk Eq. 16 J16 [44] 3 1 4/3 Y 1/16 10 160

DC-DC Converter DC [41] 2 2 1 N 1/10 5 50

Table 2 List of systems tested, and summary information on the experimental setup.

of variables n and inputs m, specify whether the inputs are additive (+), the
step size h and the evolution time Te. For quick reference we also show the
number of steps involved in the evolution Te/h. The systems are sorted in
descending value of Ō, i.e., the average polynomial order of the differential
dynamics, where Ō = 1 implies a linear system.

In the following we complete the information on all systems by providing
the dynamics, the input ranges and any overridden tool parameters used by
CORA.

5.3.1 Higgins-Sel’kov

Ṡ = v0 − Sk1P 2

Ṗ = Sk1P
2 − k2P

with v0 = 1± 0.0002, k1 = 1± 0.0002 and k2 = 1.00001± 0.0002.

CORA parameters overriding defaults:

– zonotopeOrder: inf
– tensorOrder: 2.

5.3.2 Chemical Reactor

ẋA = −u3xAxB − 0.4xAxC + 0.05u1 − 0.1xA

ẋB = −u3xAxB + 0.05u2 − 0.1xB

ẋC = u3xAxB − 0.4xAxC − 0.1xC

ẋD = 0.4xAxC − 0.1xD

with u1 = 1 ± 0.001, u2 = 0.9 ± 0.001 and u3 = 30 ± 0.2. With respect
to [28], input range widths have been divided by 100 since none of the three
tools were able to analyze the system otherwise.
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CORA parameters overriding defaults:

– tensorOrder: 2.

5.3.3 Lotka-Volterra

ẋ = u1 x(1− y)

ẏ = u2 y(x− 1)

with u1 = 3± 0.01 and u2 = 1± 0.01.

CORA parameters overriding defaults:

– zonotopeOrder: 10
– tensorOrder: 2
– reductionInterval: 50.

5.3.4 Jet Engine

ẋ = −y − 1.5x2 − 0.5x3 − 0.5 + u1

ẏ = 3x− y + u2

with u1 = ±0.005 and u2 = ±0.005.

CORA parameters overriding defaults:

– zonotopeOrder: 200
– intermediateOrder: 200
– advancedLinErrorComp: 1.

5.3.5 PI Controller

v̇ = −0.101(v − 20) + 1.3203(x− 0.1616)− 0.01v2

ẋ = 0.101(v − 20)− 1.3203(x− 0.1616) + 0.01v2 + 3(20− v) + u

with u = ±0.1.

CORA parameters overriding defaults:

– zonotopeOrder: 200
– advancedLinErrorComp: 1.
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5.3.6 Jerk Equation 21

ẋ = y

ẏ = z

ż = −z3 − yx2 − ux

with u = 0.25± 0.01.

CORA parameters overriding defaults:

– zonotopeOrder: 300
– intermediateOrder: 200
– errorOrder: 50
– advancedLinErrorComp: 1.

5.3.7 Lorenz Attractor

ẋ = y

ẏ = z

ż = −z3 − yx2 − ux

with u = 28± 0.01.

CORA parameters overriding defaults:

– zonotopeOrder: 300.

5.3.8 Rössler Attractor

ẋ = −y − z
ẏ = x+ 0.1y

ż = z(x− 6) + u

with u = 0.1± 0.001.

CORA parameters overriding defaults:

– tensorOrder: 2.

5.3.9 Jerk Equation 16

ẋ = y

ẏ = z

ż = −y + x2 + u

with u = −0.03± 0.001.
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5.3.10 DC-DC Converter

With respect to [41], the system has been rewritten in its equivalent input-
affine form in order to be analyzed using Ariadne:

ẋ = −0.018x− 0.066 y + u1(
1

600
x+

1

15
y) + u2

ẏ = 0.071x− 0.00853 y + u1(− 1

14
x− 20

7
y)

with u1 = ±0.002 and u2 = 1
3 ±

1
15 .

CORA parameters overriding defaults:

– taylorTerms: 20
– tensorOrder: 2.

5.4 Results

This subsection on results starts by evaluating the quality of approximation
with/without simplification of the parameters that represent a set. After as-
sessing the quality at the default noise levels, we analyze the effect of varying
the noise levels, along with the number of parameters after a simplification
and the simplification period. The next subsection will compare these results
with those obtained using CORA and Flow*.

Given the large size of the benchmark suite, figures will be shown only for
selected systems on some results. Instead we will rely on quantitative tabular
data based on the metrics that were previously introduced.

Z C A S P

ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx

HS 31.60 851 32.16 11143 T.O. T.O. T.O.

CR 100.1 99 195.2 247 323.3 640 170.5 931 247.9 1149

LV 5.267 813 12.08 7674 11.27 26754 T.O. T.O.

JE 16.13 166 14.65 725 15.19 2434 15.14 2423 14.55 3243

PI 2.929 38 4.299 66 5.944 101 5.959 105 5.946 175

J21 15.67 188 19.86 223 23.41 292 22.98 304 22.70 425

LA 5.144 311 8.297 546 12.14 1103 12.15 1152 11.71 1925

RA T.O. T.O. T.O. T.O. T.O.

J16 14.06 68 22.04 108 26.86 165 26.77 165 25.20 301

DC 0.909 11 1.900 503 1.920 1130 1.914 1385 1.919 2073

Table 3 Score ΣV and execution times tx in seconds for each system and each approxi-
mation, where no simplification of the parameters is performed. The best score for a given
system is emphasized in bold. A timeout (T.O.) is obtained if completion is not achieved
within 8 hours of execution.
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In Table 3 we show the results in terms of score ΣV and execution time tx
when using a given approximation (Z for zero, C for constant, A for affine, S
for sinusoidal and P for piecewise-constant). In particular, we want to evaluate
performance when no resetting of the parameters is performed. Results show
an interesting behavior: the best approximation in terms of volume score ΣV
does not always stem from using the highest number of parameters for the
auxiliary system (i.e., two in the case of A, S or P ). Namely, C outperforms
A for LV and S for CR; more interestingly, JE gives the best result using Z.
Since it can be shown that the local error for the chosen step sizes monoton-
ically decreases from Z to P , the motivation lies in the representation of the
flow set as a result of the addition of the auxiliary functions. Higher-order
auxiliary functions influence numerical quality of integration due to the pro-
gressive addition of parameters along with the more complicated flow function
to integrate. When the number of integration steps involved is significant, as
for RA, a result cannot be obtained within 8 hours of execution due to the
exceedingly large number of parameters, hence termination is enforced. A sim-
ilar timeout is present also for systems with a lower number of steps, i.e. HS
and LV, which instead feature a higher number of new parameters per step
and higher nonlinearity in the dynamics (refer to Table 2 for comparisons);
in these cases the timeout is due to the effort of evolving a set with a larger
number of parameters.

Table 3 also shows that even if we focus on approximations using two
parameters, the best result largely depends on the system under analysis.
This behavior, along with the particular case of JE, suggests that we should
check all available approximations and choose the best one. Our framework
allows for this choice to be performed at each integration step. However, this
tight approach incurs in a significant cost in terms of execution time, slightly
lower than the sum of the costs in Table 3. Consequently we defined a loose
approach for choosing the best approximation: a counter ka is associated with
a given approximation a, with ka = 1∀a at the beginning of evolution; if an
approximation is not the best one, the value of ka is doubled and a will be
checked again after ka steps; instead when a iis the best one, we reset ka = 1.
Such exponential delay in checking a less-than-optimal approximation allows
to focus on the best approximation(s).

Table 4 compares the best available result for each system from Table 3,
where the approximation is chosen statically at the beginning of evolution and
used for all steps, with dynamic choices of the best approximation using re-
spectively the tight and the loose approach. Since a dynamic choice will, in
general, yield a mix of approximations, we provide a “a%” column that sum-
marizes the frequency of choosing a given approximation, i.e., A93P7 means
that the affine approximation was the best one on 93% of the steps while the
piecewise-affine approximation was chosen on the remaining 7%. We see that
a tight dynamic choice yields better results than the best static choice; our
evaluation showed that the best approximation changes infrequently and we
can identify sections of the evolution where a given approximation is always
chosen. Therefore such behavior is compatible with a loose dynamic choice of
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best static tight dynamic loose dynamic

ΣV tx a ΣV tx a% ΣV tx a%

HS 32.16 11143 C T.O. T.O.

CR 323.3 640 A 324.0 3894 A93P7 323.6 683 A91P9

LV 12.08 7674 C T.O. T.O.

JE 16.13 166 Z 16.16 1887 Z82P18 16.13 171 Z100

PI 5.959 105 S 5.962 580 S44P56 5.960 151 S24P76

J21 23.41 292 A 23.94 1433 C2A86S4P8 23.41 295 A100

LA 12.15 1152 S 12.22 6398 A61S24P15 12.20 1429 A48S37P15

RA T.O. T.O. T.O.

J16 26.86 165 A 26.86 901 A96P4 26.86 176 A96P4

DC 1.920 1130 A 1.920 6534 A97P3 1.920 1268 A96P4

Table 4 Volume score ΣV and execution times tx in seconds for each system and various
setups, when not simplifying the number of parameters; the first one picks the best approx-
imation statically chosen from Table 3; the second one comes from dynamically evaluating
each approximation at each step and selecting the best one; the third one comes from dy-
namically evaluating each approximation with a frequency proportional to its quality. The
best ΣV for a given system is emphasized in bold. A timeout (T.O.) is obtained if completion
is not achieved within 8 hours of execution.

Z C A S P

ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx

HS 30.80 84 46.56 35 48.40 38 41.76 131 44.17 47

CR 101.2 21 214.3 14 502.3 21 219.6 146 428.9 23

LV 5.265 219 10.89 89 14.53 60 12.83 169 13.53 76

JE 15.47 25 13.72 26 14.43 26 14.37 54 14.56 28

PI 2.701 6.7 3.859 5.6 5.486 5.5 5.479 10 5.492 7.8

J21 15.08 31 19.37 17 23.10 13 22.90 20 23.23 15

LA 1.325 41 6.187 23 8.979 14 8.992 19 9.045 18

RA 71.70 46 107.2 28 114.2 25 109.8 34 120.0 36

J16 12.00 14 19.49 6.5 23.78 5.3 23.78 6.2 23.27 7.7

DC 0.907 2.7 1.888 5.4 1.906 5.9 1.902 13 1.906 11

Table 5 Score ΣV and execution times tx in seconds for each system and each approxi-
mation, where simplification of the parameters is performed. The highest score for a given
system is emphasized in bold.

the best approximation: as shown in the third column of Table 4, the score
ΣV is very close to the one coming from a tight approximation, while the
execution time tx is not particularly higher than the one coming from the
best static approximation. Still, the execution time remains significantly high,
preventing completion for some of the systems. In the following we will ana-
lyze the effect of performing a periodic simplification of the parameters, with
simplification period Ns = 12, where we keep βs = 6 times the number of
parameters introduced between simplification events.

Table 5 shows the results when using simplification. Compared with Ta-
ble 3, it is apparent that the execution times are significantly reduced. This
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in turn allows to complete execution for all approximations on all systems.
The best static approximation for a given system differs in the presence of
simplification, but this situation is somehow expected due to different set vol-
umes and number of parameters involved. Figure 1 shows the trajectory of
the CR system, specifically on the xA-xC projection, comparing the results
with no simplification (left figure) and with simplification (right figure). For
graphical purposes, the trajectories are overlapped, drawn from the coarsest
to the finest, from black to white, in order to show the different flow radiuses;
the initial values are (0, 0) and we see how the trajectory increases its radius
in the two cases.

(a) No simplification (b) Simplification

Fig. 1 Plot of the xA-xC trajectory of the CR system for all approximations, drawn starting
from the coarsest one (black fill) to the finest one (white fill), either with no simplification
of the parameters (1a) or with simplification (1b).

In order to evaluate the complete benchmark suite on a dynamic choice
of the best approximation, Table 6 provides data equivalent to Table 4. On
the first column we also tabulate the best loose dynamic result from Table 4
itself for comparison purposes. We notice that the volume score metric, being
inaccurate, can sometimes result in unexpected behaviors, such as for LV a
loose dynamic score higher than the tight dynamic score, or for JE a tight
dynamic score worse than the best static score. Apart from these outliers, we
can draw conclusions similar to those of Table 4. Comparison with the first
column shows that in some cases (i.e., at least CR and J21, if we do not consider
the improvement from timeout in the HS, LV and RA cases) simplification
yields a better score. This is especially true for a tight dynamic choice of
the approximation, but again a loose dynamic choice allows for significantly
shorter execution times with very small losses of accuracy.
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loose dynamic (no simpl.) best static tight dynamic loose dynamic

ΣV tx a% ΣV tx a ΣV tx a% ΣV tx a%

HS T.O. 48.40 38 A 49.49 242 A88P12 48.91 39 A94P6

CR 323.6 683 A91P9 502.3 21 A 504.5 181 A91P9 502.4 26 A91P9

LV T.O. 14.53 60 A 14.53 366 A95P5 14.54 62 A94P6

JE 16.13 171 Z100 15.47 25 Z 14.39 155 Z78P21 15.47 28 Z100

PI 5.960 151 S24P76 5.492 7.8 P 5.493 30 S15P85 5.492 8.8 P100

J21 23.41 295 A100 23.23 15 P 23.77 63 C1A86P13 23.10 14 A100

LA 12.20 1429 A48S37P15 9.045 18 P 9.080 70 A58S6P36 9.070 18 A46S4P50

RA T.O. 120.0 36 P 117.7 143 A96P4 113.8 27 A100

J16 26.86 176 A96P4 23.78 6.2 S 23.77 29 A96P4 23.77 6.1 A96P4

DC 1.920 1268 A96P4 1.906 5.9 A 1.906 36 A71P29 1.906 7.7 A88P12

Table 6 Score ΣV and execution time tx in seconds for each system and various setups,
when simplifying the parameters; the first one picks the loose selection entries from Table 4;
the second one picks the best from Table 5; the third one comes from dynamically evaluating
each approximation at each step and selecting the best one; the fourth one comes from
dynamically evaluating each approximation with a frequency proportional to its quality. The
best score for a given system is emphasized in bold, while the best score when simplifying
the parameters is emphasized through underlining, if not already the absolute best score.

5.4.1 Dependency on the noise level

Since the auxiliary system and the local error depend on the range of the
inputs, it is interesting to study the relation between executions time, quality
of the results, and the range of inputs. If we interpret inputs as noise sources,
this corresponds to study how the noise level affects performance.

Table 7 evaluates each system using a loose dynamic choice of the best
approximation while simplifying the parameters. The noise level ranges from
1/4 the nominal value to 4 times the nominal value. Results show the expected
decay in volume score when noise increases. Results also show that the execu-

x 1/4 x 1/2 nominal x 2 x 4

ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx

HS 109.1 22 76.77 27 48.91 39 23.36 107 11.49 296

CR 1573 13 943.3 19 502.4 26 217.6 53 60.87 223

LV 69.31 12 32.70 26 14.54 62 5.947 206 1.165 5032

JE 29.21 13 21.85 19 15.47 28 9.368 50 4.953 15

PI 12.82 7.1 8.849 7.5 5.492 8.8 3.085 10 1.664 15

J21 36.31 6.8 30.47 9.2 23.10 14 15.41 27 8.807 73

LA 33.48 9.5 17.64 11 9.070 18 4.574 35 2.255 71

RA 385.6 18 221.5 20 113.8 27 58.85 48 29.12 80

J16 58.56 3.6 39.67 4.3 23.77 6.1 13.11 10 6.570 22

DC 4.877 3.9 3.816 5.4 1.906 7.7 0.944 15 0.464 23

Table 7 Volume score ΣV and execution times tx in seconds for each system, varying the
noise level with respect to the nominal value.
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Fig. 2 Plot of the trajectory of the LV system when varying the noise level, using the values
in Table 7, from 4 times the nominal value (black fill) to 1/4 times the nominal value (white
fill).

tion time increases: this is due to the fact that the corresponding increase in
volume of the evolved set implies a more complex polynomial representation
of the set. Figure 2 shows the LV system, where we overlap the plots from the
largest noise (in black) down to the smallest noise (in white). The trajectory
resembles an ellipsoid, with evolution in the counterclockwise direction; since
with the largest noise the reachable set increases very quickly, the black fill
covers a large region with respect to the white fill.

5.4.2 Dependency on the number of parameters after a simplification

Now we evaluate the impact of varying the number of parameters preserved
after a simplification event, hereby called Ps. In particular we correlate such
number to the number of parameters added between simplification events,
which we call P . We introduced βs as a positive number such that Ps =
βsP , where βs ≥ 1 is a reasonable condition; consequently, the number of
parameters grows from βsP to (βs + 1)P between simplification events. The
higher βs, the higher the average number of parameters used and therefore the
more accurate the representation.

In Table 8 we vary between βs = 1 to βs = 24, with βs = +∞ meaning
that no simplification is performed. We would expect ΣV to be monotonically
increasing with respect to βs, but we already know that not resetting can be
detrimental to the quality. The Table indeed shows that for CR, J21 and for
those systems unable to complete evolution without simplification (i.e., HS,
LV and RA) the volume score has a maximum at a finite βs. Even more inter-
estingly, J21 seems to have multiple maxima, suggesting that small variations
of the simplification policy perturb the optimal solution in a non-negligible
way.
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βs = 1 βs = 3 βs = 6 βs = 12 βs = 18 βs = 24 βs = +∞

ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx

HS 17.68 31 40.20 34 48.91 39 54.30 54 54.51 73 54.40 98 T.O.

CR 325.3 22 457.4 23 502.4 26 467.2 35 439.1 45 415.9 56 323.6 683

LV 8.587 29 14.07 39 14.54 62 14.31 112 13.69 204 13.33 291 T.O.

JE 14.92 20 15.27 23 15.47 28 15.64 39 15.80 51 15.89 63 16.13 171

PI 4.945 5.7 5.102 6.7 5.492 8.8 5.574 12 5.786 17 5.823 22 5.960 151

J21 15.85 7.9 23.29 9.8 23.10 14 23.59 20 23.16 29 23.54 34 23.41 295

LA 5.073 9.8 7.965 14 9.070 18 9.044 26 9.906 35 10.96 44 12.20 1429

RA 21.42 16 58.87 21 113.8 27 135.2 39 133.7 60 135.1 84 T.O.

J16 15.57 3.3 21.67 4.7 23.77 6.1 25.19 8.3 25.71 12 26.46 16 26.86 176

DC 1.888 4.9 1.905 5.4 1.906 7.7 1.906 13 1.906 24 1.909 44 1.920 1268

Table 8 Volume score ΣV and execution times tx in seconds for each system, varying the
amount of parameters to keep after a simplification represented by βs. A loose selection of
the best approximation is enforced. The best ΣV with respect to βs for a given system is
emphasized in bold.

Figure 3 shows the x-y trajectory of the LA system for the different values
of βs. Evolution starts from (0, 0) and ends in the bottom left corner of the
figure. Compared to previous figures, the volume of the set with respect to
the range of evolution in the continuous space yields a comparatively thinner
trajectory, yet we can still identify the darker outline due to the smaller values
of βs.

Fig. 3 Plot of the x-y trajectory of the LA system when varying the number of parameters
after a simplification βs, using the values in Table 8, from a minimum equal to the number
of parameters introduced between simplifications (black fill) to a maximum of infinity (white
fill), meaning that no simplification is performed.
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Ns = 1 Ns = Nev
32

Ns = Nev
16

Ns = Nev
8

Ns = Nev
4

Ns = Nev
2

Ns = +∞

ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx

HS 15.47 67 50.69 50 50.02 69 49.26 153 42.17 669 27.08 6163 T.O.

CR 199.2 23 408.3 21 506.4 24 508.2 31 470.2 52 405.5 139 323.6 683

LV 5.563 94 14.25 74 14.29 109 14.12 221 12.76 745 12.29 4605 T.O.

JE 10.29 25 15.17 23 15.42 30 15.56 56 16.00 128 16.13 165 16.13 171

PI 4.175 6.4 5.025 6.7 5.514 7.8 5.403 10 5.241 18 5.462 45 5.960 151

J21 13.98 16 22.14 12 23.53 12 23.60 16 23.68 26 21.73 72 23.41 295

LA 4.542 20 8.985 14 9.277 20 9.066 36 9.550 84 10.12 285 12.20 1429

RA 82.00 26 141.9 64 144.2 172 134.1 754 115.2 5192 T.O. T.O.

J16 9.794 8.5 21.07 5.2 24.08 5.6 24.31 7.6 24.44 14 24.27 43 26.86 176

DC 1.877 4.6 1.887 4.2 1.895 4.4 1.905 6.6 1.906 7.3 1.904 13 1.920 1268

Table 9 Volume score ΣV and execution times tx in seconds for each system, varying the
number of steps between simplifications Ns as a fraction of the total number of evolution
steps Nev . The best ΣV with respect to Ns for a given system is emphasized in bold.

5.4.3 Dependency on the simplification period

The second parameter that affects the simplification policy is the simplification
period Ns, i.e., a fixed number of steps after which a simplification event
occurs. Similarly to βs, a larger simplification period implies a larger number
of parameters being used throughout evolution.

Table 9 shows the quality while varying Ns from a value of 1, meaning
simplification at each step, to Ns = +∞, i.e., no simplification; for this Table
we chose Ns values that are relative to the total number of steps Nev of the
specific system. Similarly to Table 8, the HS, CR, LV, J21 and RA systems
feature a maximum value of the score for a finite Ns, which leads to the
same conclusion about a large number of parameters negatively affecting the
approximation quality.

Figure 4 plots the x-y trajectories of the J16 system for all chosen values
of Ns, overlapping from Ns = 1 to Ns = +∞ since the quality on this system
increases monotonically with Ns. Evolution starts from the right side of the
figure and consequently the flow progressively increases along time, clearly
showing the difference in volume across the different values of Ns.

5.5 Comparison with other tools

In this subsection we finally compare our results with those from CORA and
Flow*. However, since CORA performs approximate rounding, its numerical
results cannot be rigorous even when using interval arithmetics. For this rea-
son, in the following Tables the actual comparison is between Ariadne and
Flow*, while CORA is used as a reference.

In Table 10 we evaluate the quality of our approach with respect to Flow*
and CORA while varying the noise level and using a fixed step size. The ra-
tionale here is that as the level increases, the impact of a more accurate input
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Fig. 4 Plot of the x-y trajectory of the J16 system when varying the number of steps
between simplifications Ns, using the values in Table 9, from a minimum equal to 1 (black
fill) to a maximum of infinity (white fill), meaning that no simplification is performed.

approximation increases. Systems are presented in decreasing order of non-
linearity from left to right. For mostly-linear systems CORA has the best
results due to its kernel relying on linearization of the dynamics; Flow* has
similar benefits due to specific optimizations on low-order polynomial repre-
sentations. On the other hand, it is apparent that Flow* and CORA suffer
when the nonlinearity is high, to the point of being unable to complete evo-
lution. An N/A result in Flow* is due to failing convergence of the flow set
over-approximation, while for CORA this is specifically due to a diverging
number of split sets required to bound the flow set. Since Ariadne maintains
a larger number of parameters when handling higher noise values, the compu-
tation time increases with the noise, while the computation times of Flow*
and CORA do not depend on the noise (Table 10 shows execution times only
for the nominal noise). Summarizing, in this setup Ariadne consistently gives
better bounds for systems with medium and high nonlinearity, with compara-
ble computation times with respect to Flow* for low noise levels, while also
avoiding failure for high noise levels.

Figure 5 specifically compares the x-y trajectories of the J21 system at
nominal noise. Since the three tools use different plotting approaches, it was
not possible to use the same canvas and we settled on enforcing the same plot
range at least. It is still possible to notice from the thickness of the trajectories
that Ariadne has a smaller final set (on the right side of the figure) compared
with CORA and Flow*.

Table 11 compares the three tools by equalizing the execution time. This
is achieved by using a different step size for Flow* and CORA in order to
obtain roughly the same execution time as Ariadne. We express the ratio
between the step size and the nominal step size with ρh, where ρh > 0. This
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Table 10 Comparison with CORA and Flow* for different noise levels. For each approach
and each system, the score ΣV is shown. Since the execution time tx is the same for Flow*
regardless of the noise level, it is shown only for the nominal noise. The highest score
between Ariadne and Flow* for each system and each noise level is emphasized in bold.
When CORA produces the best result, it is underlined for reference.

setup system

noise tool HS CR LV JE PI J21 LA RA J16 DC

× 1
4

Ariadne ΣV 109.1 1573 69.31 29.21 12.82 36.31 33.48 385.6 58.56 4.877

tx 22 13 12 13 7.1 6.8 9.5 18 3.6 3.9

CORA ΣV 16.92 2539 14.39 18.40 11.53 7.459 11.08 264.0 51.47 7.605

tx 4.0 1.0 2.5 3.8 2.5 3.3 4.0 2.7 3.7 0.26

Flow* ΣV 71.78 762.1 2.242 23.18 11.10 15.75 17.14 263.5 52.96 7.559

× 1
2

Ariadne ΣV 76.77 943.3 32.70 21.85 8.849 30.47 17.64 221.5 39.67 3.816

tx 27 19 26 19 7.5 9.2 11 20 4.3 5.4

CORA ΣV 13.62 1632 5.970 15.55 8.420 6.803 8.983 177.3 38.30 3.827

tx 3.9 1.0 2.6 3.8 2.3 6.5 4.1 4.0 3.5 0.26

Flow* ΣV 56.97 384.5 N/A 19.01 7.994 14.28 12.33 174.6 39.11 3.804

×1

Ariadne ΣV 48.91 502.4 14.54 15.47 5.492 23.10 9.070 113.8 23.77 1.906

tx 39 26 62 28 8.8 14 18 27 6.1 7.7

CORA ΣV 8.162 930.2 1.680 11.81 5.472 5.710 6.543 110.4 25.20 1.915

tx 3.9 1.0 3.5 3.7 2.5 6.2 4.1 4.0 3.3 0.26

Flow* ΣV 37.78 169.9 N/A 13.87 5.107 11.99 8.113 107.5 25.49 1.902

tx 29 19 13 7.4 3.7 19 12 81 2.5 0.24

×2

Ariadne ΣV 23.36 217.6 5.947 9.368 3.085 15.41 4.574 58.85 13.11 0.944

tx 107 53 206 50 10 27 35 48 10 15

CORA ΣV 0.675 433.9 0.807 7.862 3.218 4.235 3.911 63.67 14.76 0.952

tx 4.0 1.0 127 3.6 2.3 6.2 4.1 4.0 3.3 0.26

Flow* ΣV 17.49 50.50 N/A 8.828 2.931 8.948 4.857 61.42 14.76 0.944

×4

Ariadne ΣV 11.49 60.87 1.165 4.953 1.664 8.807 2.255 29.12 6.570 0.464

tx 296 223 5032 185 15 73 71 80 22 23

CORA ΣV N/A 146.0 N/A 4.517 1.763 1.704 2.450 33.50 7.825 0.465

tx N/A 1.0 N/A 3.6 2.2 6.1 4.0 4.0 3.4 0.75

Flow* ΣV N/A N/A N/A 4.827 1.577 5.599 2.670 32.23 8.322 0.465

(a) Ariadne (b) CORA (c) Flow*

Fig. 5 Plot of the x-y trajectory of the J21 system at nominal noise, for Ariadne (5a),
CORA (5b), and Flow* (5c).
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Table 11 Comparison with CORA and Flow* for different noise levels, while equalizing
the execution time tx with respect to Ariadne. For each approach and each system, the
score ΣV is shown. The highest score between Ariadne and Flow* for each system and each
noise level is emphasized in bold. When CORA produces the best result, it is underlined for
reference.

setup system

noise tool HS CR LV JE PI J21 LA RA J16 DC

× 1
4

Ariadne ΣV 109.1 1573 69.31 29.21 12.82 36.31 33.48 385.6 58.56 4.877

tx 22 13 12 13 7.1 6.8 9.5 18 3.6 3.9

CORA ΣV 49.42 4656 N/A 27.20 13.00 8.753 12.23 464.8 51.47 7.655

ρh 4.6 3.9 N/A 3.5 3.3 1.1 1.1 4.6 1.0 16.9

Flow* ΣV 64.92 643.3 2.161 26.55 11.10 N/A 14.26 133.5 56.25 7.725

ρh 0.8 0.7 0.9 1.7 3.7 N/A 0.8 0.4 1.3 9.5

× 1
2

Ariadne ΣV 76.77 943.3 32.70 21.85 8.849 30.47 17.64 221.5 39.67 3.816

tx 27 19 26 19 7.5 9.2 11 20 4.3 5.4

CORA ΣV 43.53 2684 N/A 22.84 9.360 12.96 11.82 270.6 40.70 3.820

ρh 3.0 4.8 N/A 5.3 3.5 1.6 1.4 4.8 1.4 25.0

Flow* ΣV 54.76 384.5 N/A 22.65 7.994 N/A 11.56 94.44 42.42 3.860

ρh 0.9 1.0 N/A 7.4 3.7 N/A 0.9 0.4 1.6 12.1

×1

Ariadne ΣV 48.91 502.4 14.54 15.47 5.492 23.10 9.070 113.8 23.77 1.906

tx 39 26 62 28 8.8 14 18 27 6.1 7.7

CORA ΣV 33.15 1364 N/A 16.50 6.000 16.73 9.900 153.8 27.62 1.902

ρh 3.5 5.7 N/A 8.0 3.8 2.8 2.3 6.6 2.2 35.0

Flow* ΣV 40.50 185.5 N/A 16.49 5.690 8.974 9.416 73.96 27.90 1.924

ρh 1.3 1.3 N/A 3.5 2.3 0.7 1.5 0.5 2.1 14.6

×2

Ariadne ΣV 23.36 217.6 5.947 9.368 3.085 15.41 4.574 58.85 13.11 0.944

tx 107 53 206 50 10 27 35 48 10 15

CORA ΣV 20.07 612.4 N/A 10.33 3.507 15.24 6.284 79.61 15.85 0.944

ρh 5.8 8.1 N/A 14.0 4.8 5.3 4.5 11.5 3.5 70.0

Flow* ΣV 21.13 69.44 N/A 10.34 3.316 10.95 6.045 53.06 16.18 0.955

ρh 3.3 2.4 N/A 5.5 2.5 1.4 2.6 0.7 3.0 23.3

×4

Ariadne ΣV 11.49 60.87 1.165 4.953 1.664 8.807 2.255 29.12 6.570 0.464

tx 296 223 5032 185 15 73 71 80 22 23

CORA ΣV 1.086 214.1 N/A 5.537 1.909 9.864 3.201 37.97 6.772 0.465

ρh 1.1 17.0 N/A 52.0 7.3 14.6 9.0 18.1 7.5 55.0

Flow* ΣV 1.725 N/A N/A 6.421 1.836 9.133 3.286 32.23 8.452 0.471

ρh 7.3 N/A N/A 14.5 3.5 3.7 4.4 1.0 5.0 30.3

approach implicitly abstracts the choice of the step size, which should be
treated as a numerical setting rather than part of the system specification.
Here we see that the speed advantage of Flow* on high noise levels can be
actually exploited to obtain better results: here we can use ρh > 1 and obtain
the best ΣV for low/medium nonlinearity in the dynamics. This is not the
case for highly nonlinear systems, where Flow* does not converge even with
a smaller step size. On the contrary, for some systems with low noise, a ρh < 1
is required for equalization, which further reduces the score with respect to
Ariadne. For the LV system, CORA had significant issues due to splitting if
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(a) Ariadne (b) CORA (c) Flow*

Fig. 6 Plot of the x-y trajectory of the RA system at 4 times the nominal noise, while
equalizing the execution time, for Ariadne (6a), CORA (6b), and Flow* (6c).

the step size is reduced. Consequently, it was not actually possible to equalize
the execution time. It should be underlined that a significantly high ρh is not
without any impact: since the number of steps increases, so does the number
of reachable sets. This in turn may have a non-negligible cost for operations
such as set drawing, (bounded) model checking or convergence for infinite time
reachability.

Finally, Figure 6 specifically compares the x-y trajectories of the RA system
at four times the nominal noise. It can be seen from the thickness of the
trajectories that CORA gives a tighter approximation, followed by Flow*
and finally Ariadne.

6 Conclusions

In this paper, we have given a numerical method for computing rigorous over-
approximations of the reachable sets of differential inclusions. The method in-
troduces high-order error bounds for single-step approximations. By providing
improved control of local errors, the method allows for accurate computation
of reachable sets over longer time intervals.

We have also presented several theorems for obtaining local errors of differ-
ent orders. It is easy to see that higher order errors (improved accuracy) require
approximations that have a larger number of parameters (reduced efficiency).
The growth of the number of parameters is an issue, in general. Sophisticated
methods for handling these are at least as important as the single-step method.
Nonetheless, in our evaluation of the methodology, we found that Ariadne
yields tighter set bounds, as the nonlinearity increases, compared with the
state-of-the-art tools Flow* and CORA. Although no analysis of the order
of the method is given in [7], we believe that Flow* has a local error O(h2),
so the global error is intrinsically first-order. Hence a higher quality is to be
expected from Ariadne, since the proposed methodology is able to achieve
third-order local errors. On the other hand, our approach introduces extra
parameters at each step in the representation of the evolved set, causing a
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growth in complexity, whereas Flow* and CORA have a fixed complexity of
the set representations. As a result, the computational cost increases with both
the noise level and the total number of steps taken. A comparison with the
state-of-the-art using a common time budget indeed suggests that Ariadne
currently provides better bounds for highly nonlinear systems. Consequently,
improving Ariadne’s methods for simplifying the description of sets repre-
sents a strategic area of ongoing research in order to fully exploit the advantage
of the proposed approach.

Currently, we are working towards component-wise derivations of the lo-
cal error, in order to better address systems whose variables have scaling of
different orders of magnitude. Some of the other planned extensions on differ-
ential inclusions are outlined in our paper [22]. These include constraint set
representation of uncertainties via affine and more general convex constraints.
Further, we plan an extension to nonlinearity in the inputs, to maximize the
expressiveness in terms of system dynamics.
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